Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mạnh Hùng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 11 2022 lúc 22:54

A=(99-98)(99+98)+...+(3-2)(3+2)+1

=99+98+...+3+2+1

=100*99/2=4950

dong duc dung
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 21:12

a:

Số số hạng trong dãy M là:

(1002-12):10+1=100(số)

=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10

\(M=1002-992+982-972+...+22-12\)

\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)

\(=10+10+...+10\)

=10*50=500

b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)

\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)

=10+10+...+10

=10*10=100

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 1 2017 lúc 8:38

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 1 2019 lúc 2:57

Chọn D.

S = 1002 – 992 +982 – 972 + … + 22 – 12

= (100 – 99)(100 + 99) + (98 – 97)(98 + 97) + … + (2-1)(2+1)

= 199 + 195 + … + 3

Ta có dãy số 3, 7, …, 195, 199 là cấp số cộng với công sai d = 4, số hạng đầu tiên u1 = 3 và số hạng n là un = 199.

Do đó có 199 = 3 + (n – 1).4 n = 50.

Vậy .

KIRI NITODO
Xem chi tiết
HT.Phong (9A5)
29 tháng 6 2023 lúc 8:21

\(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=199+195+...+3\)

Số lượng số hạng:

\(\left(199-3\right):4+1=50\) (số hạng)

Tổng:

\(\left(3+199\right)\times50:2=5050\)

Akai Haruma
29 tháng 6 2023 lúc 8:23

Lời giải:

$=(100^2-99^2)+(98^2-97^2)+....+(2^2-1^2)$

$=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)$

$=100+99+98+97+...+2+1=100(100+1):2=5050$

nguyen thuy linh
Xem chi tiết
Thảo Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 11:51

a: A=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)

=100+99+98+...+2+1

=5050

b: \(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)

\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)\)+1

\(=2^{64}-1+1=2^{64}\)

Hoàng Hưng Đạo
Xem chi tiết
Nguyên Lê
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 9 2021 lúc 16:46

\(A=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\\ A=100+99+99+98+...+2+1\\ A=\left(100+1\right)\left(100-1+1\right):2=5050\)

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^1-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1=2^{128}-1+1=2^{128}\)

\(C=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\\ C=2c^2\)

dvh_badboizzzz
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2022 lúc 11:09

a: \(A=\left(100-99\right)\left(100+99\right)+\left(98+97\right)\left(98-97\right)+....+\left(2+1\right)\left(2-1\right)\)

\(=100+99+98+97+...+2+1\)

=5050

b: \(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)

\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)

\(=\left(2^{64}-1\right)\cdot\left(2^{64}+1\right)+1\)

\(=2^{128}-1+1=2^{128}\)

Trần Tuấn Hoàng
20 tháng 2 2022 lúc 11:16

a. \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=199+195+...+3\)

\(=\dfrac{\left(199+3\right)\left(\dfrac{199-3}{4}+1\right)}{2}=5050\)

b. \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=2^{128}-1+1=2^{128}\)

c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-2b^2-4ab\)

\(=2c^2\)