Những câu hỏi liên quan
Thư Trần
Xem chi tiết
Gia Huy
18 tháng 6 2023 lúc 21:35

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)

Ta có:

\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)

BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)

Đánh giá cuối cùng đúng theo BĐT Cauchy

Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi  a = b = c = 1.

2K9-(✎﹏ ΔΠGΣLS ΩҒ DΣΔTH...
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2022 lúc 20:52

1.

Ta có:

\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2=\dfrac{1}{2}\left(x^2+y^2\right)\left(x^2+y^2\right)\ge\left(x^2+y^2\right)xy\)

Đặt vế trái của BĐT cần chứng minh là P, áp dụng bồ đề vừa chứng minh ta có:

\(P\le\dfrac{a.abc}{bc\left(b^2+c^2\right)+a.abc}+\dfrac{b.abc}{ca\left(c^2+a^2\right)+b.abc}+\dfrac{c.abc}{ab\left(a^2+b^2\right)+c.abc}\)

\(P\le\dfrac{a^2.bc}{bc\left(a^2+b^2+c^2\right)}+\dfrac{b^2.ac}{ca\left(a^2+b^2+c^2\right)}+\dfrac{c^2.ab}{ab\left(a^2+b^2+c^2\right)}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

2.

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=1\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2}{3}\)

Vũ Tiền Châu
Xem chi tiết
Lightning Farron
5 tháng 10 2017 lúc 22:44

\(BDT\Leftrightarrow\dfrac{\dfrac{1}{a}+\dfrac{1}{a^2}}{1+\dfrac{1}{a}+\dfrac{1}{a^2}}+\dfrac{\dfrac{1}{b}+\dfrac{1}{b^2}}{1+\dfrac{1}{b}+\dfrac{1}{b^2}}+\dfrac{\dfrac{1}{c}+\dfrac{1}{c^2}}{1+\dfrac{1}{c}+\dfrac{1}{c^2}}\le2\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(n,h,t\right)\) thì ta có :

\(\Leftrightarrow\dfrac{n+n^2}{1+n+n^2}+\dfrac{h+h^2}{1+h+h^2}+\dfrac{t+t^2}{1+t+t^2}\le2\)

\(\Leftrightarrow\dfrac{1}{1+n+n^2}+\dfrac{1}{1+h+h^2}+\dfrac{1}{1+t+t^2}\ge1\)

Đặt \(n=\dfrac{yz}{x^2};h=\dfrac{xz}{y^2};t=\dfrac{xy}{z^2}\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\)

\(\dfrac{x^4}{x^4+x^2yz+y^2z^2}+\dfrac{y^4}{y^4+xy^2z+x^2z^2}+\dfrac{z^4}{z^4+xyz^2+x^2y^2}\ge1\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2}\)

Cần cm \(\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2}\ge1\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\ge x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2\)

\(\Leftrightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\left(1\right)\)

Áp dụng BĐT AM-GM ta có:

\(x^2y^2+y^2z^2=y^2\left(x^2+z^2\right)\ge2xy^2z\)

Tương tự rồi cộng theo vế ta có \(\left(1\right)\) đúng

Khi \(a=b=c=1\)

Nguyễn Huy Thắng
4 tháng 10 2017 lúc 19:05

Sửa đề\(VP\le 2\) sau đó nó chính là 1 dạng của BĐT Vasc k cần thêm j cả :">

Vũ Tiền Châu
4 tháng 10 2017 lúc 9:14

mấy bác hộ em nốt nhé

Nguyễn Thanh
Xem chi tiết
Karry Angel
Xem chi tiết
Nguyễn Huy Tú
7 tháng 8 2017 lúc 17:23

Bài 3:

Áp dụng bất đẳng thức AM - GM có:
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}\)

\(=2+2+2=6\)

Dấu " = " khi x = y = z = 1

Vậy...

TFBoys
7 tháng 8 2017 lúc 17:24

3. Với x,y,z>0 áp dụng BĐT Cauchy ta có

\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\)

\(\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}=2+2+2=6\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=z=1\)

1. Với a=b=c=0, ta thấy BĐT trên đúng

Với a,b,c>0 áp dụng BĐT Cauchy cho 3 số dương

\(a^3+a^3+b^3\ge3\sqrt[3]{a^3.a^3.b^3}=3\sqrt[3]{a^6b^3}=3a^2b\) (1)

\(b^3+b^3+c^3\ge3\sqrt[3]{b^3.b^3.c^3}=3\sqrt[3]{b^6c^3}=3b^2c\) (2)

\(c^3+c^3+a^3\ge3\sqrt[3]{c^3.c^3.a^3}=3\sqrt[3]{c^6a^3}=3c^2a\) (3)

Cộng (1), (2), (3) vế theo vế:

\(a^3+b^3+c^3\ge a^2b+b^2c+c^2a>\dfrac{a^2b+b^2c+c^2a}{3}\) (vì a,b,c>0)

Do đó BĐT trên đúng \(\forall a,b,c\ge0\)

TFBoys
7 tháng 8 2017 lúc 17:33

2. Xét a=0, ta thấy BĐT trên đúng

Xét a>0, áp dụng BĐT Cauchy dạng \(\sqrt[3]{xyz}\le\dfrac{x+y+z}{3}\) ta có

\(\sqrt[3]{a}=\sqrt[3]{a.1.1}\le\dfrac{a+2}{3}\) (1)

\(\sqrt[3]{a^2}=\sqrt[3]{a.a.1}\le\dfrac{2a+1}{3}\) (2)

Cộng (1) và (2) ta được \(\sqrt[3]{a}+\sqrt[3]{a^2}\le\dfrac{3a+3}{3}=1+a\)

Đẳng thức xảy ra \(\Leftrightarrow a=1\)

Vũ Tiền Châu
Xem chi tiết
Neet
3 tháng 10 2017 lúc 0:14

\(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

\(\Rightarrow VT=\sum\dfrac{1}{2\left(\dfrac{x}{y}\right)^2+1}=\sum\dfrac{y^2}{2x^2+y^2}=\sum\dfrac{y^4}{2x^2y^2+y^4}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)^2}=1\)

[???]

vvvvvvvv
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 5 2021 lúc 13:43

Ta có đánh giá sau với a không âm:

\(\dfrac{a}{1+a^2}\le\dfrac{36a+3}{50}\)

Thật vậy, BĐT tương đương:

\(\left(36a+3\right)\left(a^2+1\right)\ge50a\)

\(\Leftrightarrow\left(3a-1\right)^2\left(4a+3\right)\ge0\) (luôn đúng)

Tương tự: \(\dfrac{b}{1+b^2}\le\dfrac{36b+3}{50}\) ; \(\dfrac{c}{1+c^2}\le\dfrac{36c+3}{50}\)

Cộng vế: \(VT\le\dfrac{36\left(a+b+c\right)+9}{50}=\dfrac{9}{10}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Lê Thị Thục Hiền
19 tháng 5 2021 lúc 13:51

Ta chứng minh bđt phụ \(\dfrac{a}{1+a^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(a-\dfrac{1}{3}\right)\)

Thật vậy bđt trên \(\Leftrightarrow\dfrac{-3a^2+10a-3}{10\left(1+a^2\right)}-\dfrac{18}{25}\left(a-\dfrac{1}{3}\right)\le0\)

\(\Leftrightarrow\left(a-\dfrac{1}{3}\right)\left[\dfrac{3\left(3-a\right)}{10\left(1+a^2\right)}-\dfrac{18}{25}\right]\le0\)

\(\Leftrightarrow-\dfrac{36\left(a-\dfrac{1}{3}\right)^2\left(\dfrac{3}{4}+a\right)}{50\left(1+a^2\right)}\le0\) ( luôn đúng với mọi \(a\)\(\ge\)0)

Tương tự cũng có:\(\dfrac{b}{1+b^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(b-\dfrac{1}{3}\right)\)\(\dfrac{c}{1+c^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(c-\dfrac{1}{3}\right)\)

Cộng vế với vế => VT\(\le\dfrac{9}{10}+\dfrac{18}{25}\left(a+b+c-1\right)=\dfrac{9}{10}\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{3}\)

 

 

Nguyễn Linh Chi
Xem chi tiết
tth_new
14 tháng 6 2019 lúc 14:22

11/Theo BĐT AM-GM,ta có; \(ab.\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)\(=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự với hai BĐT kia,cộng theo vế và rút gọn ta được đpcm.

Dấu "=" xảy ra khi a= b=c

tth_new
14 tháng 6 2019 lúc 16:35

Ơ vãi,em đánh thiếu abc dưới mẫu,cô xóa giùm em bài kia ạ!

9/ \(VT=\frac{\Sigma\left(a+2\right)\left(b+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+8+abc+\left(ab+bc+ca\right)}\)

\(\le\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+9+3\sqrt[3]{\left(abc\right)^2}}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{ab+bc+ca+4\left(a+b+c\right)+12}=1\left(Q.E.D\right)\)

"=" <=> a = b = c = 1.

Mong là lần này không đánh thiếu (nãy tại cái tội đánh ẩu)

tth_new
14 tháng 6 2019 lúc 14:19

10/Thêm \(\frac{b}{a}-2\) ở mỗi vế ta cần chứng minh:

\(\frac{\left(a-b\right)^2}{ab}+\frac{b}{c}\ge\frac{4a}{a+c}+\frac{b}{a}-2\) (vận dùng đẳng thức \(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\))

\(\Leftrightarrow\frac{c\left(a-b\right)^2+ab^2}{abc}\ge\frac{4a^2+ab+bc-2a\left(a+c\right)}{a\left(a+c\right)}\)

\(\Leftrightarrow\frac{c\left(a-b\right)^2+ab^2}{abc}\ge\frac{2a^2+a\left(b-c\right)+c\left(b-a\right)}{a\left(a+c\right)}\)

\(\Leftrightarrow\frac{\left(c\left(a-b\right)^2+ab^2\right)\left(a+c\right)}{abc\left(a+c\right)}-\frac{\left(2a^2+a\left(b-c\right)+c\left(b-a\right)\right)bc}{abc\left(a+c\right)}\ge0\)

Em làm tắt tiếp:v

\(\Leftrightarrow\frac{a\left(ac^2+b^2c+ca^2+ab^2-4abc\right)}{abc\left(a+c\right)}\ge0\)\(\Leftrightarrow\frac{\left(ac^2+b^2c+ca^2+ab^2-4abc\right)}{bc\left(a+c\right)}\ge0\)

Áp dụng BĐT AM-GM ta được: \(VT\ge\frac{4\sqrt[4]{\left(abc\right)^4}-4abc}{bc\left(a+c\right)}=\frac{0}{bc\left(a+c\right)}=0\)

Ta có Q.E.D. 

P/s: Đúng không ta? Mà sao có người tk sai nhỉ?

Phan PT
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 0:21

\(P=\dfrac{a^2}{ab+\dfrac{1}{b}}+\dfrac{b^2}{bc+\dfrac{1}{c}}+\dfrac{c^2}{ca+\dfrac{1}{a}}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}}\)

\(P\ge\dfrac{3\left(ab+bc+ca\right)}{ab+bc+ca+\dfrac{ab+bc+ca}{abc}}=\dfrac{3}{1+\dfrac{1}{abc}}=\dfrac{3abc}{1+abc}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Ngô Bá Hùng
27 tháng 1 2021 lúc 22:38

Với a, b, c > 0 có:

\(P=\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\\ =\dfrac{a^2}{a\left(b+2c\right)}+\dfrac{b^2}{b\left(c+2a\right)}+\dfrac{c^2}{c\left(a+2b\right)}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\)

chọn \(\alpha=\dfrac{1}{abc}\Rightarrow dpcm\)