Vũ Thành Hưng

Chứng minh rằng nếu a,b,c \(\ge\)0 và abc=1 thì 
\(\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c}\le1\)

Nguyễn Việt Lâm
5 tháng 4 2021 lúc 21:55

\(\Leftrightarrow\dfrac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\le1\)

\(\Leftrightarrow\dfrac{ab+bc+ca+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\le1\)

\(\Leftrightarrow ab+bc+ca+12\le2\left(ab+bc+ca\right)+9\)

\(\Leftrightarrow ab+bc+ca\ge3\)

Hiển nhiên đúng do: \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}=3\)

HT2k02
5 tháng 4 2021 lúc 22:05

Vì abc=1 , ta đặt \(a=\dfrac{x}{y};b=\dfrac{y}{z};c=\dfrac{z}{x}\)

Điều phải chứng minh tương đương với:

\(\dfrac{1}{2+\dfrac{x}{y}}+\dfrac{1}{2+\dfrac{y}{z}}+\dfrac{1}{2+\dfrac{z}{x}}\le1\\ \Leftrightarrow\dfrac{y}{2y+x}+\dfrac{z}{2z+y}+\dfrac{x}{2x+z}\le1\\ \Leftrightarrow\dfrac{2y}{2y+x}+\dfrac{2z}{2z+y}+\dfrac{2x}{2x+z}\le2\\ \Leftrightarrow\dfrac{x}{2y+x}+\dfrac{y}{2z+y}+\dfrac{z}{2x+z}\ge1\left(1\right)\)

Áp dụng bất đẳng thức bunhiacopxki dạng phân thức ta có:

\(\dfrac{x}{2y+x}+\dfrac{y}{2z+x}+\dfrac{z}{2x+z}=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2zx}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

=> bài toán được chứng minh

Dấu bằng xảy ra khi x=y=z=1 <=>a=b=c=1


Các câu hỏi tương tự
2K9-(✎﹏ ΔΠGΣLS ΩҒ DΣΔTH...
Xem chi tiết
Trương Quỳnh Hoa
Xem chi tiết
Nguyen Thanh Hien
Xem chi tiết
Tư Linh
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Bùi Tiến Hùng
Xem chi tiết
蝴蝶石蒜
Xem chi tiết
2K9-(✎﹏ ΔΠGΣLS ΩҒ DΣΔTH...
Xem chi tiết
Công chúa thủy tề
Xem chi tiết