\(\dfrac{2x-3}{3}\)= \(\dfrac{4x-1}{4}\)
1/ \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
2/ \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
3/ \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
4/ \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
5/ \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
1: Ta có: \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow2x-8+12x=4x-2\)
\(\Leftrightarrow10x=6\)
hay \(x=\dfrac{3}{5}\)
2: Ta có: \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
\(\Leftrightarrow15x-6-30=10-20x\)
\(\Leftrightarrow35x=46\)
hay \(x=\dfrac{46}{35}\)
3: Ta có: \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
\(\Leftrightarrow3x-6-4=6x-6\)
\(\Leftrightarrow-3x=4\)
hay \(x=-\dfrac{4}{3}\)
1)\(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow\dfrac{\left(x-4\right).2}{3.2}+\dfrac{2x.6}{6}=\dfrac{4x-2}{6}\)
\(\Rightarrow2x-8+12x=4x-2\\ \Leftrightarrow10x=6\\ \Leftrightarrow x=\dfrac{3}{5}\)
4: Ta có: \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
\(\Leftrightarrow40x-20+45x-30=48x-36\)
\(\Leftrightarrow37x=14\)
hay \(x=\dfrac{14}{37}\)
5: Ta có: \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
\(\Leftrightarrow2x-6-3x-6=x+4-9\)
\(\Leftrightarrow-x-x=-5-12=-17\)
hay \(x=\dfrac{17}{2}\)
Giaỉ các phương trình sau:
a, \(\dfrac{6-x}{4x-3}\)=\(\dfrac{2}{4x-3}\)
b, \(\dfrac{3-x}{2x-3}\)+x-1=\(\dfrac{-4}{2x-3}\)
c, \(\dfrac{2x-4}{x-3}\)=2x+1
a, \(\dfrac{6-x}{4x-3}=\dfrac{2}{4x-3}\)
ĐKXĐ: \(x\ne\dfrac{3}{4}\)
PT đã cho \(\Leftrightarrow\)\(\dfrac{\left(6-x\right)\left(4x-3\right)}{4x-3}=\dfrac{2\left(4x-3\right)}{4x-3}\)
\(\Rightarrow6-x=2\)
\(\Leftrightarrow x=4\)(thỏa mãn ĐKXĐ)
b, \(\dfrac{3-x}{2x-3}+x-1=\dfrac{-4}{2x-3}\)
ĐKXĐ: \(x\ne\dfrac{3}{2}\)
PT đã cho \(\Leftrightarrow\)\(\dfrac{\left(3-x\right)\left(2x-3\right)}{2x-3}+\left(x+1\right)\left(2x-3\right)=\dfrac{-4\left(2x-3\right)}{2x-3}\)
\(\Rightarrow3-x+2x-3x+2x-3=-8x+12\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\dfrac{3}{2}\)(không thỏa mãn ĐKXĐ)
Vậy \(x\in\varnothing\).
a) ĐK: \(x\ne\dfrac{3}{4}\)
PT \(\Rightarrow27x-18-4x^2=8x-6\)
\(\Leftrightarrow4x^2-19x+12=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=\dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=4\)
b) ĐK: \(x\ne\dfrac{3}{2}\)
PT \(\Rightarrow3-x+2x^2-5x+3=-4\)
\(\Leftrightarrow x^2-3x+5=0\) (Vô nghiệm)
Vậy phương trình vô nghiệm
c) ĐK: \(x\ne3\)
PT \(\Rightarrow2x^2-5x-3=2x-4\)
\(\Leftrightarrow2x^2-7x+1=0\) \(\Leftrightarrow x=\dfrac{7\pm\sqrt{41}}{4}\)
Vậy phương trình có nghiệm \(x=\dfrac{7\pm\sqrt{41}}{4}\)
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
a \(\dfrac{4}{2x-3}+\dfrac{4x}{4x^2-9}=\dfrac{1}{2x+3}\)
\(\dfrac{4}{2x-3}+\dfrac{4x}{4x^2-9}=\dfrac{1}{2x+3}\) đkxđ x\(\ne\dfrac{3}{2};\dfrac{-3}{2}\)
\(\Leftrightarrow\dfrac{4\left(2x+3\right)}{4x^2-9}+\dfrac{4x}{4x^2-9}=\dfrac{2x-3}{4x^2-9}\)
\(\Leftrightarrow8x+12+4x=2x-3\)
<=>8x+4x-2x=-3-12
<=>10x=-15
=>x=\(\dfrac{-3}{2}\)(loại vì không thuộc đkxđ)
=>\(S\in\varnothing\)
b \(\dfrac{4}{2x-3}+\dfrac{4x}{4x^2-1}=\dfrac{7}{2x-1}\)
Sửa đề: \(\dfrac{4}{2x+1}+\dfrac{4x}{4x^2-1}=\dfrac{7}{2x-1}\)
ĐKXĐ: \(x\notin\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Ta có: \(\dfrac{4}{2x+1}+\dfrac{4x}{4x^2-1}=\dfrac{7}{2x-1}\)
\(\Leftrightarrow\dfrac{4\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\dfrac{4x}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{7\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\)
Suy ra: \(8x-4+4x=14x+7\)
\(\Leftrightarrow12x-4-14x-7=0\)
\(\Leftrightarrow-2x-11=0\)
\(\Leftrightarrow-2x=11\)
hay \(x=-\dfrac{11}{2}\)(thỏa ĐK)
Vậy: \(S=\left\{-\dfrac{11}{2}\right\}\)
quy đồng mẫu thức của các phân thức
\(\dfrac{1}{x+2};\dfrac{-3x}{x-2};\dfrac{3}{x^2-4x+4}\)
\(\dfrac{-1}{2x+2};\dfrac{3}{2-2x};\dfrac{5}{4x^2+4x+1}\)
cho mình hỏi là giữa khác phân số với nhua là phải có dấu như là công, trừ, nhân hay chia chứ?
giải các phương trinh sau
1/ \(\dfrac{4x-4}{3}-\dfrac{7-x}{5}\)
2/ \(\dfrac{3x-9}{5}=\dfrac{3-x}{2}\)
3/ \(\dfrac{2x-1}{5}-\dfrac{3-x}{3}=1\)
4/ \(\dfrac{x-5}{3}+\dfrac{3x+4}{2}=\dfrac{5x+2}{6}\)
5/ \(\dfrac{x-3}{2}+\dfrac{2x+3}{5}=\dfrac{2x+5}{10}\)
\(1,\dfrac{4x-4}{3}=\dfrac{7-x}{5}\\ \Leftrightarrow5\left(4x-4\right)=3\left(7-x\right)\\ \Leftrightarrow20x-20=21-3x\\ \Leftrightarrow17x=41\Leftrightarrow x=\dfrac{41}{17}\)
\(2,\dfrac{3x-9}{5}=\dfrac{3-x}{2}\\ \Leftrightarrow6x-18=15-5x\\ \Leftrightarrow11x=33\\ \Leftrightarrow x=3\)
\(3,\dfrac{2x-1}{5}-\dfrac{3-x}{3}=1\\ \Leftrightarrow\dfrac{6x-3-15+5x}{15}=1\\ \Leftrightarrow11x-18=1\\ \Leftrightarrow x=\dfrac{19}{11}\)
\(4,\dfrac{x-5}{3}+\dfrac{3x+4}{2}=\dfrac{5x+2}{6}\\ \Leftrightarrow2x-10+9x+12=5x+2\\ \Leftrightarrow6x=0\Leftrightarrow x=0\)
\(5,\dfrac{x-3}{2}+\dfrac{2x+3}{5}=\dfrac{2x+5}{10}\\ \Leftrightarrow5x-15+4x+6=2x+5\\ \Leftrightarrow7x=14\\ \Leftrightarrow x=2\)
Tick nha
2: Ta có: \(\dfrac{3x-9}{5}=\dfrac{3-x}{2}\)
\(\Leftrightarrow6x-18=15-5x\)
\(\Leftrightarrow11x=33\)
hay x=3
Thực hiện phép tính:
a) \(\dfrac{x}{2x-y}-\dfrac{2x-y}{4x-2y}\)
b)\(\dfrac{3x+1}{x^2-1}-\dfrac{x}{2x-2}\)
c) \(\dfrac{x-2}{x^2-4}-\dfrac{-8-x}{3x^2+6x}\)
d) \(\dfrac{2}{2x-3}-\dfrac{x}{2x+3}-\dfrac{2x+1}{9-4x^2}\)
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
Giai các bpt sau
a,\(\dfrac{x-1}{2}-\dfrac{7x+3}{15}\le\dfrac{2x+1}{3}+\dfrac{3-2x}{5}\)
b,\(\dfrac{2x+1}{-3}-\dfrac{2x^2+3}{-4}>\dfrac{x\left(5-3x\right)}{-6}-\dfrac{4x+1}{-5}\)
a: \(\Leftrightarrow15\left(x-1\right)-2\left(7x+3\right)\le10\left(2x+1\right)+6\left(3-2x\right)\)
\(\Leftrightarrow15x-15-14x-6\le20x+10+18-12x\)
=>x-21<=8x+28
=>-7x<=49
hay x>=-7
b: \(\Leftrightarrow20\left(2x+1\right)-15\left(2x^2+3\right)< 10x\left(5-3x\right)-12\left(4x+1\right)\)
\(\Leftrightarrow40x+20-30x^2-45< 50x-30x^2-48x-12\)
=>40x-25<2x-12
=>38x<13
hay x<13/38
\(a,\dfrac{x-1}{2}-\dfrac{7x+3}{15}\le\dfrac{2x+1}{3}+\dfrac{3-2x}{5}\\ \Leftrightarrow\dfrac{15\left(x-1\right)}{30}-\dfrac{2\left(7x+3\right)}{30}\le\dfrac{10\left(2x+1\right)}{30}+\dfrac{6\left(3-2x\right)}{30}\\ \Leftrightarrow15x-15-14x-6\le20x+10+18-12x\\ \Leftrightarrow x-21\le8x+28\\ \Leftrightarrow7x+49\ge0\\ \Leftrightarrow x\ge-7\)
\(b,\dfrac{2x+1}{-3}-\dfrac{2x^2+3}{-4}>\dfrac{x\left(5-3x\right)}{-6}-\dfrac{4x+1}{-5}\\ \Leftrightarrow\dfrac{20\left(2x+1\right)}{-60}-\dfrac{15\left(2x^2+3\right)}{-60}>\dfrac{10x\left(5-3x\right)}{-60}-\dfrac{12\left(4x+1\right)}{-60}\\ \Leftrightarrow40x+20-30x^2-45>50x-30x^2-48x-12\\ \Leftrightarrow38x-13>0\\ \Leftrightarrow x>\dfrac{13}{38}\)
giải phương trình
a, \(\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1}\)
b,\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
c,\(\dfrac{5}{x^2+x-6}-\dfrac{2}{x^2+4x+3}=\dfrac{-3}{2x-1}\)
d, \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
e, \(x^3+x^2+x+1=0\)
\(a,\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1};ĐKXĐ:x\ne\pm\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{2x-1}-\dfrac{2x-1}{2x+1}+1=0\\ \Leftrightarrow\dfrac{3\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}=0\\ \Rightarrow3\left(2x+1\right)-\left(2x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow6x+3-\left(4x^2-4x+1\right)+\left(4x^2-1\right)=0\\ \Leftrightarrow6x+3-4x^2+4x-1+4x^2-1=0\\ \Leftrightarrow10x+1=0\\ \Leftrightarrow10x=-1\\ \Leftrightarrow x=-\dfrac{1}{10}\)
Vậy \(x\in\left\{-\dfrac{1}{10}\right\}\)