giải phương trình
a, \(\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1}\)
b,\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
c,\(\dfrac{5}{x^2+x-6}-\dfrac{2}{x^2+4x+3}=\dfrac{-3}{2x-1}\)
d, \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
e, \(x^3+x^2+x+1=0\)
1. giải pt :
a) \(\dfrac{1}{x-3}+2=\dfrac{5}{x-1}+x\)
b)\(\dfrac{2}{x^2+4x-21}=\dfrac{3}{x-3}\)
c) \(\dfrac{1}{x^2+2x+3}+4=\dfrac{1}{x^2+1}\)
d) \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
e) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
giải các phương trình ẩn x sau:
a) \(\dfrac{1}{3x}\)+\(\dfrac{1}{2x}\)=\(\dfrac{1}{4}\)
b) \(\dfrac{3}{8x}-\dfrac{1}{2x}=\dfrac{1}{x^2}\)
c)\(\dfrac{1}{2x}+\dfrac{3}{4x}=\dfrac{5}{2x^2}\)
d) \(\dfrac{2a}{x+a}=1\)
Giải phương trình
a) (x+3)(x+1)(x2+2)=0
b) (x2-4)(2x+1)=0
c) 4x2+4x+1=0
d) \(\dfrac{2x}{3}-3\left(7-x\right)=\dfrac{4x-11}{8}\)
e) \(\dfrac{5\left(x-3\right)}{2}-\dfrac{4}{3}=\dfrac{3\left(x-1\right)}{4}+6\)
f) \(\dfrac{2}{3x}-\dfrac{1}{2x}=\dfrac{3}{4x^2}\)
g) \(\dfrac{2}{x-3}=\dfrac{1}{x+2}\)
h)\(\dfrac{3}{x+3}-\dfrac{1}{x-2}=\dfrac{5}{2\left(x+3\right)}\)
Giải các bất phương trình sau:
a) 2(3x + 1) - 4(5 - 2x) > 2(4x - 3) - 6
b) 9x2 - 3(10x - 1) < (3x - 5)2 - 21
c) \(\dfrac{x-1}{2}+\dfrac{x-2}{3}+\dfrac{x-3}{4}>\dfrac{x-4}{5}+\dfrac{x-5}{6}\)
a) \(x-\dfrac{\dfrac{x}{2}-\dfrac{3+x}{4}}{2}=\dfrac{2x-\dfrac{10-7x}{3}}{3}-\left(x-1\right)\)
b) \(x^2-6x-2+\dfrac{14}{x^2-6x+7}=0\)
c) \(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\)
d) \(\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}=\dfrac{6}{x^2-9}\)
e) \(\left(1-\dfrac{2x-1}{x+1}\right)^3+6\left(1-\dfrac{2x-1}{x+1}\right)^2=\dfrac{12\left(2x-1\right)}{x+1}-20\)
Giải các phương trình có chứa ẩn ở mẫu sau:
a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\)
b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\)
d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\)
f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\)
g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\)
h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)
i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\)
j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\)
l, \(\dfrac{2}{x+1}-\dfrac{1}{xx-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
m, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
n, \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
o, \(\dfrac{x-2}{x+2}+\dfrac{3}{x-2}=\dfrac{x^2-11}{x^2-4}\)
p, \(\dfrac{x+4}{x+1}+\dfrac{x}{x-1}=\dfrac{2x^2}{x^2-1}\)
z, \(\dfrac{2x}{x-1}+\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)
q, \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)
r, \(\dfrac{1}{x-3}+2=\dfrac{5}{x-1}+x\)
s, \(\dfrac{2}{x^2+4x-21}=\dfrac{3}{x-3}\)
1. \(\dfrac{5\left(x-1\right)+2}{6}-\dfrac{7x-1}{4}=\dfrac{2\left(2x+1\right)}{7}-5\)
2. \(x-\dfrac{3\left(x+30\right)}{15}-24\dfrac{1}{2}=\dfrac{7x}{10}-\dfrac{2\left(10x+2\right)}{5}\)
3. \(14\dfrac{1}{2}-\dfrac{2\left(x+3\right)}{5}=\dfrac{3x}{2}-\dfrac{2\left(x-7\right)}{3}\)
4. \(\dfrac{x+1}{3}+\dfrac{3\left(2x+1\right)}{4}=\dfrac{2x+3\left(x+1\right)}{6}+\dfrac{7+12x}{12}\)
5. \(\dfrac{3\left(2x-1\right)}{4}-\dfrac{3x+1}{10}+1=\dfrac{2\left(3x+2\right)}{5}\)
6. \(x-\dfrac{3}{17}\left(2x-1\right)=\dfrac{7}{34}\left(1-2x\right)+\dfrac{10x-3}{2}\)
7. \(\dfrac{3\left(x-3\right)}{4}+\dfrac{4x-10,5}{10}=\dfrac{3\left(x+1\right)}{5}+6\)
8. \(\dfrac{2\left(3x+1\right)+1}{4}-5=\dfrac{2\left(3x-1\right)}{5}-\dfrac{3x+2}{10}\)
Hàng dzề, hàng dzề!!! Mại dzô, mại dzô các cậu ơi...Nhanh tay lên kẻo cháy hàng, híhí........................
Giải các phương trình sau
6) \(\left(x^2-1\right)^2=4x+1\)
7) \(\left(x^2-9\right)^2=12x+1\)
8) \(\left(x^2+12x+35\right)\left(x^2-4x+3\right)=297\)
9) \(\left(8x+5\right)^2\left(4x+3\right)\left(2x+1\right)=9\)
10) \(\dfrac{x^2}{3}+\dfrac{48}{x^2}=10\left(\dfrac{x}{3}-\dfrac{4}{x}\right)\)
11) \(\dfrac{x^4+4}{x^2-2}=5x\)
12) \(x^4+9=5x\left(x^2-3\right)\)
13) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
14) \(x^2+\dfrac{x^2}{x^2+2x+1}=3\)
15) \(\dfrac{x-49}{50}+\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)