\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đk:x>0;x\ne9\right)\)
tìm x để P nguyên.
mng giúp tớ bài này vs ạ, tớ cần gấp ạ
\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)đk:x>=0;x khác 4. rút gọn biểu thức A
\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\\ =\left(\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\\ =\left(\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\\ =\dfrac{x+2-\left(2x-4\sqrt{x}\right)-\left(\sqrt{x}+1-x-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{x+2-2x+4\sqrt{x}-\sqrt{x}-1+x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)^2}\)
\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
\(A=\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
\(A=\dfrac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\)
\(A=\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(A=\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+1\right)}\)
\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)đk:x>=0;x khác 4). rút gọn biểu thức A
\(A=\left(\dfrac{x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\right)\cdot\dfrac{\sqrt{x}+2-\sqrt{x}+3}{\sqrt{x}+2}\)
\(=\dfrac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{5}{\sqrt{x}+2}\)
\(=\dfrac{5\left(4\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)
Rút gọn biểu thức : \(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\) x \(\left\{\dfrac{x+\sqrt{x}}{\sqrt{x}+1}+1\right\}\)ĐK:x>=0 ;x≠1
Với x >= 0 ; x khác 1
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}.\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+1\right)\)
\(=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=x-1\)
CMR:
\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\le2\) \(\left(đk:x\ge0,x\ne4\right)\)
\(A=\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}+1}\left(x\ge0\right)\)
\(\Leftrightarrow A=\dfrac{\sqrt[]{x}+1+1}{\sqrt[]{x}+1}\)
\(\Leftrightarrow A=1+\dfrac{1}{\sqrt[]{x}+1}\)
Ta lại có :
\(\sqrt[]{x}\ge0\)
\(\Leftrightarrow\sqrt[]{x}+1\ge1\)
\(\Leftrightarrow\dfrac{1}{\sqrt[]{x}+1}\le1\)
\(\Rightarrow A=1+\dfrac{1}{\sqrt[]{x}+1}\le1+1=2\)
\(\Rightarrow dpcm\)
Cho x,y,z > 0. Tìm :
a) \(maxA=\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\left(ĐK:x+y+z=1\right)\)
b) \(maxB=\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{x^2}}\left(ĐK:x+y\le1\right)\)
c) \(max,minC=2x+\sqrt{5-x^2}\)
Bài 1 Cho 2 biểu thức A=\(\sqrt{50}-3\sqrt{8}+\sqrt{\left(\sqrt{2}-1\right)^2}\)và B=\(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\) (\(Đk:x\ge0;x\ne1\))
a) Rút gọn A,B
b)Tìm giá trị của x để giá trị biểu thức A bằng giá trị biểu thức B
a: \(A=5\sqrt{2}-6\sqrt{2}+\sqrt{2}-1=-1\)
\(B=\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{x-1}=\dfrac{x+\sqrt{x}}{x-1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: A=B
=>căn x=-căn x+1
=>căn x=1/2
=>x=1/4
Tìm GTNN của F(x)=\(\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\) \(\left(ĐK:x\ge\dfrac{1}{2}\right)\)
\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)ĐK:x\ge0.\)
Giúp mk bài này vs làm ko ra
\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+\sqrt{x}\left(\sqrt{x}+2\right)-\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+x+2\sqrt{x}-x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left[\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\)
\(=\left(\sqrt{x}+2\right):\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}+2}\)
\(=x-2\sqrt{x}+4\)
=.= hok tốt!!
\(P=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\left(ĐK:x>0,x\ne1,x\ne\frac{1}{4}\right)\)
Tính giá trị của P tại \(x=\frac{4}{\sqrt{10}}\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)\)