Những câu hỏi liên quan
Nguyễn Hồng Pha
Xem chi tiết
Akai Haruma
23 tháng 3 2017 lúc 2:35

Lời giải:

BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)

Đặt \(a^2+ab+ac=t\)

BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)

Luôn đúng vì bình phương của một số thực luôn là số không âm

Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\)\(bc=0\)

BHQV
Xem chi tiết
Akai Haruma
12 tháng 2 2023 lúc 19:12

Lời giải:
a. 

$f(-1)=a-b+c$

$f(-4)=16a-4b+c$

$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$

$\Rightarrow f(-4)=6f(-1)$

$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)

b.

$f(-2)=4a-2b+c$

$f(3)=9a+3b+c$

$\Rightarrow f(-2)+f(3)=13a+b+2c=0$

$\Rightarrow f(-2)=-f(3)$

$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)

Trần Đức Vinh
2 tháng 3 2023 lúc 22:38

a. 


(

1
)
=



+

f(−1)=a−b+c


(

4
)
=
16


4

+

f(−4)=16a−4b+c



(

4
)

6

(

1
)
=
16


4

+


6
(



+

)
=
10

+
2


5

=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0



(

4
)
=
6

(

1
)
⇒f(−4)=6f(−1)



(

1
)

(

4
)
=

(

1
)
.
6

(

1
)
=
6
[

(

1
)
]
2

0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)] 
2
 ≥0 (đpcm)

b.


(

2
)
=
4


2

+

f(−2)=4a−2b+c


(
3
)
=
9

+
3

+

f(3)=9a+3b+c



(

2
)
+

(
3
)
=
13

+

+
2

=
0
⇒f(−2)+f(3)=13a+b+2c=0



(

2
)
=


(
3
)
⇒f(−2)=−f(3)



(

2
)

(
3
)
=

[

(
3
)
]
2

0
⇒f(−2)f(3)=−[f(3)] 
2
 ≤0 (đpcm

Hồ Thị Hồng Nghi
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 7:47

Áp dụng BĐT cosi:

\(\left(2+a+b\right)\left(a+4b+ab\right)\ge3\sqrt[3]{2ab}\cdot3\sqrt[3]{4a^2b^2}=9\sqrt[3]{8a^3b^3}=9\cdot2ab=18ab\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=b=2\\a=4b=ab\end{matrix}\right.\left(\text{vô lí}\right)\)

Vậy dấu \("="\) ko xảy ra hay \(\left(2+a+b\right)\left(a+4b+ab\right)>18ab\)

Mashiro Rima
Xem chi tiết
Phương Hà
Xem chi tiết
Mai Trung Kiên
26 tháng 4 2016 lúc 20:05

(a2+ab+ac)(a2+ab+ac+bc)+b2c

đặt a2+ab+ac=x; bc=y

=>x(x+y)+y2=x2+xy+y2>=0(đúng)

Tùng Nguyễn
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Thắng Nguyễn
20 tháng 8 2017 lúc 23:39

*)Giả sử với \(n=2\) đặt \(\hept{\begin{cases}2x=b+c-a\\2y=a-b+c\\2z=a+b-c\end{cases}\left(x,y,z>0\right)}\)

\(\Rightarrow a=y+z;b=x+z;c=x+y\)

BĐT cần chứng minh là \(xy^3+yz^3+xz^3-xyz\left(x+y+z\right)\ge0\)

Tự C/M cái này bằng AM-GM nhé

*)Giả sử đúng với n (tức là dạng t/q). KO mất tính tổng quát giả sử \(a\ge b\ge c\)

Khi đó ta có: \(b^nc(b-c)\ge-a^nb(a-b)-c^na(c-a)\)

\(\Rightarrow b^{n+1}c(b-c)\ge-a^nb^2(a-b)-c^nab(c-a)\)

Nên \(a^{n+1}b(a-b)+b^{n+1}c(b-c)+c^{n+1}a(c-a)\)

\(\ge a^{n+1}b(a-b)-a^nb^2(a-b)-c^nab(c-a)+c^{n+1}a(c-a)\)

\(=a^nb(a-b)+b^nc(b-c)+c^na(c-a)\ge0\) 

Theo nguyên lí quy nạp thì có ĐPCM

Solution
Xem chi tiết
tthnew
16 tháng 11 2019 lúc 20:10

Theo em được biết thì bài a) chính là BĐT IMO 1983. Có cách giải quen thuộc là dùng phép thế Ravi ngoài ra còn có một lời giải tuyệt đẹp của Bernhard Leeb như sau:

a) Giả sử \(a=max\left\{a,b,c\right\}\). Ta có:\(VT=a\left(b+c-a\right)\left(b-c\right)^2+b\left(a+b-c\right)\left(a-b\right)\left(a-c\right)\ge0\)

Ngoài ra, từ cách phân tích trên em cũng tìm được một cách phân tích như sau:

Giả sử \(c=max\left\{a,b,c\right\}\). Ta có:

\(VT=\frac{\left[3ab+b\left(c-b\right)+4a\left(c-a\right)\right]\left(b-c\right)^2+b\left(a+b-c\right)\left(b+c-2a\right)^2}{4}\ge0\)(qed)

b) BĐT Schur bậc 3.

Khách vãng lai đã xóa
tth_new
Xem chi tiết