Phân tích đa thức thành nhân tử: x5+x4+1
HELP ME!!!
Phân tích đa thức sau thành nhân tử bằng cách thêm bớt hạng tử, tách hạng tử
a, 6x2-11x
b, x7+x5+1
c, x8+x4+1
d, x3-5x+8-4
e, x5+x4+1
a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$
$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$
$=(x^2+x+1)(x^5-x^4+x^3-x+1)$
c.
$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$
$=(x^4+1)^2-(x^2)^2$
$=(x^4+1-x^2)(x^4+1+x^2)$
$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$
$=(x^4-x^2+1)[(x^2+1)^2-x^2]$
$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$
d.
$x^3-5x+8-4=x^3-5x+4$
$=x^3-x^2+x^2-x-(4x-4)$
$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$
e.
$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$
$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$
$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^2+x)+1]$
$=(x^2+x+1)(x^3-x+1)$
Phân tích đa thức thành nhân tử:
a. x4 + 2x3 + 10x2 - 20x
b. x3 - x2y - xy2 + y3
c. x5 + x3 - x2 - 1
Phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng từ:
a) x 8 + 64; b) x 4 + 4 y 4 ; c) x 5 +x + 1.
Phân tích đa thức thành nhân tử
b. 25-x2=14xy-49y2
c. x5+x4+1
Mọi người giúp mình với ạ
b) \(25-x^2+14xy-49y^2\)
\(=25-\left(x^2-14xy+49y^2\right)\)
\(=25-\left[x^2-2\cdot7y\cdot x+\left(7y\right)^2\right]\)
\(=25-\left(x-7y\right)^2\)
\(=5^2-\left(x-7y\right)^2\)
\(=\left[5-\left(x-7y\right)\right]\left[5+\left(x-7y\right)\right]\)
\(=\left(5-x+7y\right)\left(5+x-7y\right)\)
c) \(x^5+x^4+1\)
\(=x^5+x^4+1+x^3-x^3\)
\(=\left(x^5+x^4+x^3\right)+\left(1-x^3\right)\)
\(=x^3\left(x^2+x+1\right)+\left(1-x\right)\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^3+\left(1-x\right)\right]\)
\(=\left(x^2+x+1\right)\left(x^3+1-x\right)\)
b: 25-x^2+14xy-49y^2
=25-(x-7y)^2
=(5-x+7y)(5+x-7y)
c: =x^5+x^4+x^3+1-x^3
=x^3(x^2+x+1)+(1-x)(x^2+x+1)
=(x^2+x+1)(x^3+1-x)
Phân tích đa thức thành nhân tử:
a) x4+4 b) x8+x7+1
c) x8+x4+1 d) x5+x+1
e) x2+2x2-24 f) a4+4b4
a: \(x^4+4=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b: \(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
c: \(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4-x^2+1\right)\cdot\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
a)\(x^4+4\\ =\left(x^2\right)^2+4x^2+4-4x^2\\ =\left[\left(x^2\right)^2+4x^2+4\right]-\left(2x\right)^2\\ =\left(x^2+2\right)^2-\left(2x\right)^2\\ =\left(x^2+2+2x\right)\left(x^2+2-2x\right)\)
\(a)\; x^4+4 \\= x^4+4x^2+4-4x^2\\=(x^2+2)^2-4x^2\\=(x^2+2-2x)(x^2+2+2x)\)
Phân tích đa thức sau thành nhân tử :
a,x4+8x+63
b,(x5+4)+(x3+4)-16
c,(x2+2x+7)+(x2-2x+4)(x2+2x+3)
a) \(x^4+8x+63\)
\(=x^4+4x^3+9x^2-4x^3-16x^2-36x+7x^2+28x+63\)
\(=x^2\left(x^2+4x+9\right)-4x\left(x^2+4x+9\right)+7\left(x^2+4x+9\right)\)
\(=\left(x^2+4x+9\right)\left(x^2-4x+7\right)\)
c) \(\left(x^2+2x+7\right)+\left(x^2-2x+4\right)\left(x^2+2x+3\right)\left(1\right)\)
Ta có : \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Rightarrow x^2+2x+4=\dfrac{x^3-8}{x-2}\)
\(\left(1\right)\Rightarrow\left[\left(\dfrac{x^3-8}{x-2}+3\right)\right]+\left(x^2-2x+4\right)\left[\left(\dfrac{x^3-8}{x-2}-1\right)\right]\)
\(=\left[\left(\dfrac{x^3-3x-14}{x-2}\right)\right]+\left(x^2-2x+4\right)\left[\left(\dfrac{x^3-2x-5}{x-2}\right)\right]\)
\(=\dfrac{1}{x-2}\left[x^3-3x-14+\left(x^2-2x+4\right)\left(x^3-2x-5\right)\right]\)
Phân tích đa thức thành nhân tử giúp mình với ạ , mình cảm ơn trc :((((
a) 7x.(-y)+2(y-x)2
b) ( x2+4 )-16 x2
c)x5-x4+x3-x2
b: \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\cdot\left(x+2\right)^2\)
c: \(x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
Lời giải:
a. Bạn xem lại đề
b. \((x^2+4)^2-16x^2=(x^2+4)^2-(4x)^2=(x^2+4-4x)(x^2+4+4x)\)
\(=(x-2)^2(x+2)^2\)
c.
\(x^5-x^4+x^3-x^2=x^4(x-1)+x^2(x-1)=(x^4+x^2)(x-1)\)
\(=x^2(x^2+1)(x-1)\)
a) 7x.(-y)+2(y-x)2
=>-7xy+4y-4x
b)(x^2+4)-16x^2
=>x^2+4-16x^2
=>-15x^2+4
c)x^5-x^4+x^3-x^2
=>x^4(x-1)+x^2(x-1)
=>(x^4+x^2)(x-1)
bài 4 : phân tích đa thức thành nhân tử rồi tính giá trị của các biểu thức sau :
a, A= 4(x - 2) (x+1) + (2x - 4)2 +(x+1)2 tại x = \(\dfrac{1}{2}\)
b, B= x9 - x7 - x6 - x5 + x4 + x3 + x2 - 1 tại x=1
a,
\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)
Thay $x=\dfrac12$ vào $A$, ta được:
\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)
Vậy $A=\dfrac94$ khi $x=\dfrac12$.
b,
\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)
Thay $x=1$ vào $B$, ta được:
\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)
Vậy $B=0$ khi $x=1$.
$Toru$
phân tích đa thức thành nhân tử
x4-2x3+2x-1
x⁴ - 2x³ + 2x - 1
= (x⁴ - 1) - (2x³ - 2x)
= (x² - 1)(x² + 1) - 2x(x² - 1)
= (x² - 1)(x² + 1 - 2x)
= (x - 1)(x + 1)(x² - 2x + 1)
= (x - 1)(x + 1)(x - 1)²
= (x - 1)³(x + 1)
Phân tích đa thức x 8 + x 4 + 1 thành nhân tử ta được
A. ( x 4 – x 2 + 1 ) ( x 2 – x + 1 ) ( x 2 – x – 1 )
B. ( x 4 – x 2 + 1 ) ( x 2 – x + 1 )
C. ( x 4 - x 2 + 1 ) ( x 2 – x + 1 ) ( x 2 + x + 1 )
D. ( x 4 + x 2 + 1 ) ( x 2 – x + 1 ) ( x 2 + x + 1 )
x 8 + x 4 + 1 = x 8 + 2 x 4 + 1 – x 4 = ( x 8 + 2 x 4 + 1 ) – x 4 = [ ( x 4 ) 2 + 2 . x 4 . 1 + 12 ] – x 4 = ( x 4 + 1 ) 2 – ( x 2 ) 2 = ( x 4 + 1 – x 2 ) ( x 4 + 1 + x 2 ) = ( x 4 – x 2 + 1 ) ( x 4 + 2 x 2 – x 2 + 1 ) = ( x 4 – x 2 + 1 ) [ ( ( x 2 ) 2 + 2 . 1 . x 2 + 1 ) – x 2 ] = ( x 4 – x 2 + 1 ) [ ( x 2 + 1 ) 2 – x 2 ] = ( x 4 – x 2 + 1 ) ( x 2 + 1 – x ) ( x 2 + 1 + x ) = ( x 4 – x 2 + 1 ) ( x 2 – x + 1 ) ( x 2 + x + 1 )
Đáp án cần chọn là: C