ho tam giác ABC vuông tại A, đường cao AH. Biết AB=10cm, BH=5cm. CMR: tg B=3 tg C
cho tam giác ABC vuông tại A, đường cao AH. Biết AB=10cm, BH=5cm. CMR: tg B=3 tg C
Áp dụng Py-ta-go ta có
AH^2=AB^2-BH^2=>AH=5căn3
Áp dụng hệ thức lượng trong tam giác
AH^2=BH*HC=>HC=AH^2/BH=15
=>tanB=5căn3/5=căn3
tanC=5căn3/15
=>3tanC=5căn3/15*3=căn3
nên tanB=3tanC
CHO TAM GIÁC ABC VUÔNG TẠI A, ĐƯỜNG CAO AH, BIẾT AB=10cm, BH=5cm. CMR: tan B= 3tan C
Cho tam giác ABC vuông tại A có AB = 3cm, BC = 5cm. vẽ đường cao AH của tam giác ABC.
a) Chứng minh tg ABC đồng dạng tg HBA
b) Chứng minh AB^2=BC.BH
c) Vẽ đường phân giác BD của tg ABC cắt AH ở E. Tính EA/EA
Cho tg ABC vuông tại A, đường cao AH. Biết AB =6cm, AC =8cm A) nêu các tam giác đồng dạng và giải thích B) tính AH, HB, HC C) CMR AH²=HB.HC, AB²=HB.BC
a. Xét Δ HBA và Δ ABC
\(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) Δ HBA \(\sim\) Δ ABC (g.g) (1)
Xét Δ HAC và Δ ABC:
\(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)
\(\widehat{C}\) chung
\(\Rightarrow\) Δ HAC \(\sim\) Δ ABC (g.g) (2)
Từ (1) và (2) \(\Rightarrow\) Δ HBA \(\sim\) Δ HAC
b. Ta có: Δ ABC vuông tại A
Theo đ/lí Py - ta - go:
BC2 = AB2 + AC2
BC2 = 62 + 82
\(\Rightarrow\) BC2 = 100
\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm
Ta có: Δ HBA \(\sim\) Δ ABC:
\(\dfrac{HA}{AC}\) = \(\dfrac{BA}{BC}\)
\(\Rightarrow\) \(\dfrac{HA}{8}\) = \(\dfrac{6}{10}\)
\(\Rightarrow\) HA = 4,8 cm
\(\dfrac{HB}{AB}\) = \(\dfrac{BA}{BC}\) \(\Leftrightarrow\) \(\dfrac{HB}{6}\) = \(\dfrac{6}{10}\)
\(\Rightarrow\) HB = 3,6 cm
Ta có: Δ HAC \(\sim\) Δ ABC
\(\dfrac{HC}{AC}\) = \(\dfrac{AC}{BC}\)
\(\Rightarrow\) \(\dfrac{HC}{8}\) = \(\dfrac{8}{10}\)
\(\Rightarrow\) HC = 6,4cm
c. Ta có: Δ HBA \(\sim\) Δ HAC
\(\dfrac{HA}{HB}\) = \(\dfrac{HC}{HA}\)
AH2 = HB . HC
Ta có : Δ HBA \(\sim\) Δ ABC
\(\dfrac{BA}{BC}\) = \(\dfrac{HB}{AB}\)
\(\Rightarrow\) AB2 = HB . BC
a: Xet ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
góc C chung
=>ΔCHA đồng dạng với ΔCAB
=>ΔHAB đồng dạng với ΔHCA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
HB=6^2/10=3,6cm
HC=10-3,6=6,4cm
c: ΔABC vuông tại A
mà AH vuông góc BC
nên AH^2=HB*HC; AB^2=BH*BC
Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết BH = 4cm, CH = 5cm. Tính AB, AC
b) Biết AB = 10cm, AH = 6cm, tính BH, AC
a: BC=4+5=9(cm)
\(AB=\sqrt{4\cdot9}=6\left(cm\right)\)
\(AC=\sqrt{5\cdot9}=3\sqrt{5}\left(cm\right)\)
b: \(BH=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(CH=\dfrac{AH^2}{BH}=4,5\left(cm\right)\)
\(AC=\sqrt{6^2+4.5^2}=7,5\left(cm\right)\)
1) Cho tg ABC vẽ pân giác AM, biết AC=8cm, AB=10cm, AB=12cm
a) Tính BM và MC
b) Vẽ MN//AB. Tính NC và NA
2) Cho tg ABC vuông tại A, kẻ đường cao AH. Biết BH=1,8cm, CH=3,2cm
a) Tính độ dài AH
b) Tính S tg ABC
3) Cho tg nhọn ABC đường cao AH và đường cao BK cắt nhau tại I
a) C/m IA.IH=IB.IK
b) C/m CA.CK=CB.CH
a) Vì AM là đường phân giác của tam giác ABC nên:
\(\dfrac{AB}{AC}\)=\(\dfrac{BM}{MC}\)\(\Leftrightarrow\)\(\dfrac{MC}{AC}=\dfrac{BM}{AB}\)=\(\dfrac{MC+BM}{AC+AB}\)=\(\dfrac{BC}{10+8}\)=\(\dfrac{12}{18}\)=\(\dfrac{2}{3}\)
\(\Rightarrow\)BM= AB.\(\dfrac{2}{3}\)= 8.\(\dfrac{2}{3}\)\(\approx\)5,33 (cm)
\(\Rightarrow\)MC= BC-BM = 12- 5,33\(\approx\)6,67 (cm)
b) Áp dụng hệ quả của định lí Ta- let vào tam giác ABC có MN// AB (gt):
\(\dfrac{MC}{BC}=\dfrac{NC}{AN}\)\(\Rightarrow\)NC=\(\dfrac{MC.AC}{BC}\)=\(\dfrac{6,67.10}{12}\)\(\approx\)5,56 (cm)
\(\Rightarrow\)AN= AC-NC= 10- 5,56\(\approx\)4.44 (cm)
Cho tam giác ABC vuông tại A có AH là đường cao H thuộc BC. Biết AB=15cm, AH=12cm.
a, Chứng minh tg AHB đồng dạng tg CHA
b, Tính BH,HC,AC
c, Vẽ AM là tia phân giác góc BAC, M thuộc BC. Tính HM
d, Lấy E trên AC sao cho HE//AB. Gọi N là trung điểm AB. CN cắt HE tại I. CMR I là trung điểm HE
a) Tg AHC vuông tại H có :\(\widehat{HAC}+\widehat{C}=\widehat{AHC}=90^o\)
\(\widehat{HAC}+\widehat{HAB}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{HAB}=\widehat{C}\)
- Xét tg AHB và tg CHA có :
\(\widehat{AHB}=\widehat{AHC}=90^o\)
\(\widehat{HAB}=\widehat{C}\left(cmt\right)\)
\(\Rightarrow\Delta AHB~\Delta CHA\left(g.g\right)\)
(Dấu đồng dạng bị ngược, khi làm vào bài bạn quay ngược lại nha)
b) Xét tg BAH vuông tại H có :
AB2=BH2+AH2 (Pytago)
=>152=BH2+122
=>225=BH2+144
=>BH2=81
=>BH=9cm
- Do tg AHB đồng dạng tg CHA (cmt)
\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\)
\(\Rightarrow\frac{9}{12}=\frac{12}{HC}\)
\(\Rightarrow HC=16cm\)
- Có : HB+HC=BC
=> BC=9+16=25
- Xét tg ABC vuông tại A với định lí Pytago, ta tính được \(AC=20cm\)
#H
(Ý c,d để suy nghĩ tiếp)
a, Xét tam giác AHB và tam giác CAB ta có :
^AHB = ^A = 900
^B _ chung
Vậy tam giác AHB ~ tam giác CAB ( g.g ) (1)
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^A = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g ) (2)
Từ (1) và (2) suy ra tam giác AHB ~ tam giác AHC
b, Áp dụng định lí Py ta go cho tam giác AHB ta có :
\(AB^2=AH^2+BH^2\Rightarrow BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=225-144=81\Rightarrow BH=9\)cm
Ta có tam giác AHB ~ tam giác AHC ( cma )
\(\Rightarrow\frac{AH}{AH}=\frac{HB}{HC}\Rightarrow1=\frac{9}{HC}\Rightarrow HC=9\)cm
Áp dụng Py ta go cho tam giác AHC ta có :
\(AC^2=AH^2+HC^2\Rightarrow AC^2=144+81=225\Rightarrow AC=15\)cm
c, Vì AM là tia phân giác ^BAC nên \(\frac{AB}{AC}=\frac{BM}{MC}\)
mà \(BM=BC-MC=18-MC\)
do \(BC=BH+HC=9+9=18\)cm
\(\Rightarrow\frac{AB}{AC}=\frac{18-MC}{MC}\Rightarrow18-MC=MC\Rightarrow MC=9\)cm
\(\Rightarrow BM=BC-MC=18-9=9\)
( hoặc có thể làm thế này * AM là trung tuyến nên MC = BM = 18/2 = 9 cm )
\(\Rightarrow BM=BH+HM\Rightarrow HM=BM-BH\)
thay số vào, mà bài mình sai ở đâu rồi, xem lại hộ mình nhé, mệt quá, cách làm tương tự như vậy
bì BH không bằng BM nhé do BH = 9 ; BM = 9 xem lại hộ mình nhé
1. Cho tg ABC cân tại A , đường cao AH .Biết AB =5cm ; BC = 6cm.
a) Tính độ dài các đoạn thẳng BH , AH
b) Gọi G là trọng tâm của tg ABC . C/m rằng ba điểm A , G , H thẳng hàng .
2. Cho tg ABC cân tại A . Gọi M là trung điểm của cạnh BC .
a) C/m : tg ABM = tg ACM
b) Từ M vẽ MH vuông góc với AB và MK vuông góc với AC , C/m BH = CK.
c) Từ B vẽ BP vuông góc với AC , BP cắt MH tại I.C/m tg IBM cân.
3. Cho tg ABC cân tại A ( góc A < 90 độ) , vẽ BD vuông góc với AC và CE vuông góc AB .Gọi H là giao điểm của BD và CE.
a) C/m : tg ABD = tg ACE
b) C/m tg AED cân
c) C/m AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.C/m góc ECB = góc DKC.
GIÚP MK VS MK ĐANG CẦN RẤT GẤP!!!!!!!!!!!!
cho tam giác abc vuông tại a có ab=9cm ac=12 cm, đường cao ah
a ) cmr tg ABC đồng dạng vs tg HBA
b) kẻ phân giác BM ( M thuộc AC ) cắt AH tại N , tyinhs độ dài AM,CM
c) c/m MH/NA=MA/MC