Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Nguyễn Thanh

Cho tg ABC vuông tại A, đường cao AH. Biết AB =6cm, AC =8cm A) nêu các tam giác đồng dạng và giải thích B) tính AH, HB, HC C) CMR AH²=HB.HC, AB²=HB.BC

Minh Phương
1 tháng 5 2023 lúc 16:02

a. Xét  Δ HBA và  Δ ABC

     \(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)

      \(\widehat{B}\) chung

\(\Rightarrow\)  Δ HBA \(\sim\)  Δ ABC (g.g) (1)

 Xét  Δ HAC và  Δ ABC:

     \(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)

       \(\widehat{C}\) chung

\(\Rightarrow\)  Δ HAC \(\sim\)  Δ ABC (g.g) (2)

Từ (1) và (2) \(\Rightarrow\) Δ HBA  \(\sim\)  Δ HAC 

b. Ta có:  Δ ABC vuông tại A

  Theo đ/lí Py - ta - go:

  BC2 = AB2 + AC2 

  BC2 = 62 + 82

\(\Rightarrow\) BC2 = 100

\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm

Ta có: Δ HBA  \(\sim\)  Δ ABC: 

   \(\dfrac{HA}{AC}\) = \(\dfrac{BA}{BC}\) 

\(\Rightarrow\) \(\dfrac{HA}{8}\) = \(\dfrac{6}{10}\) 

\(\Rightarrow\) HA = 4,8 cm

 \(\dfrac{HB}{AB}\) = \(\dfrac{BA}{BC}\)  \(\Leftrightarrow\) \(\dfrac{HB}{6}\) = \(\dfrac{6}{10}\) 

\(\Rightarrow\) HB = 3,6 cm

Ta có:  Δ HAC \(\sim\)  Δ ABC

 \(\dfrac{HC}{AC}\) = \(\dfrac{AC}{BC}\) 

\(\Rightarrow\) \(\dfrac{HC}{8}\) = \(\dfrac{8}{10}\) 

\(\Rightarrow\) HC = 6,4cm

c. Ta có: Δ HBA \(\sim\)  Δ HAC

  \(\dfrac{HA}{HB}\) = \(\dfrac{HC}{HA}\) 

AH2 = HB . HC

Ta có : Δ HBA  \(\sim\)  Δ ABC 

    \(\dfrac{BA}{BC}\) = \(\dfrac{HB}{AB}\) 

\(\Rightarrow\) AB2 = HB . BC

 

 

Hải Nguyễn Thanh
1 tháng 5 2023 lúc 14:40

Giúp mik với. Cần gấp ạaaaaa

Nguyễn Lê Phước Thịnh
1 tháng 5 2023 lúc 14:41

a: Xet ΔBAH vuông tại H và ΔBCA vuông tại A có

góc B chung

=>ΔBAH đồng dạng với ΔBCA

Xét ΔCHA vuông tại H và ΔCAB vuông tại A có

góc C chung

=>ΔCHA đồng dạng với ΔCAB

=>ΔHAB đồng dạng với ΔHCA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

HB=6^2/10=3,6cm

HC=10-3,6=6,4cm

c: ΔABC vuông tại A

mà AH vuông góc BC

nên AH^2=HB*HC; AB^2=BH*BC


Các câu hỏi tương tự
Helpcvtpls
Xem chi tiết
Ngọc ý
Xem chi tiết
Hà Thương
Xem chi tiết
Lê Văn Anh Minh
Xem chi tiết
Khoi Minh
Xem chi tiết
Lý Hoàng
Xem chi tiết
Trần Thu Trang
Xem chi tiết
Ngân
Xem chi tiết
Nguyễn Thúy Hiền
Xem chi tiết