Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tth_new
Xem chi tiết
Cà Bui
1 tháng 6 2019 lúc 12:58

xD

Có: \(\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\)(1)

\(=\frac{\left(x-z\right)\left(x+z\right)}{y+z}+\frac{\left(y-x\right)\left(x+y\right)}{z+x}+\frac{\left(z-y\right)\left(y+z\right)}{x+y}\)

\(\left(1\right)=S_1\left(x-z\right)^2+S_2\left(y-x\right)^2+S_3\left(z-y\right)^2\)

Trong đó:

\(\hept{\begin{cases}S_1=\frac{x+z}{\left(y+z\right)\left(x-z\right)}\\S_2=\frac{x+y}{\left(z+x\right)\left(y-x\right)}\\S_3=\frac{y+z}{\left(x+y\right)\left(z-y\right)}\end{cases}}\)

Giả sử: \(x\ge y\ge z\)( x,y,z lớn hơn 0)

Có: \(S_1=\frac{x+z}{\left(y+z\right)\left(x-z\right)}\ge0\)

Xét: \(S_1+S_2=\frac{x+z}{\left(y+z\right)\left(x-z\right)}-\frac{x+y}{\left(x+z\right)\left(x-y\right)}=\frac{\left(x+z\right)^2+\left(x+y\right)\left(y+z\right)^2+\left(y+z\right)\left(y-z\right)\left(2x+y+z\right)}{.....}\ge0\)

Xét tiếp \(S_1+S_3\)là xong

Không biết đúng k tại mình hơi yếu

tth_new
1 tháng 6 2019 lúc 13:34

*Nếu được giả sử như bạn Cà Bùi thì bài làm của em như sau,mong mọi người góp ý ạ!

Ta có: \(VT=\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}-\frac{x^2-z^2+y^2-x^2}{x+y}\)

\(=\left(x^2-z^2\right)\left(\frac{x+y-y-z}{\left(x+y\right)\left(y+z\right)}\right)+\left(y^2-x^2\right)\left(\frac{x+y-z-x}{\left(z+x\right)\left(x+y\right)}\right)\) (nhóm các số thích hợp + quy đồng)

\(=\frac{\left(x+z\right)\left(x-z\right)^2}{\left(x+y\right)\left(y+z\right)}+\frac{\left(y-x\right)\left(y-z\right)}{\left(z+x\right)}\)

Do a, b, c có tính chất hoán vị, nên ta giả sử y là số lớn nhất. Khi đó vế trái không âm hay ta có đpcm.

Cà Bui
1 tháng 6 2019 lúc 13:36

Bn giỏi quá !

Phạm Kim Oanh
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 10:18

Áp dụng BĐT cosi cho 3 số x;y;z dương

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}\ge2\sqrt{\dfrac{x^2y^2}{y^2z^2}}=\dfrac{2x}{z}\\ \dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{y^2z^2}{x^2z^2}}=\dfrac{2y}{z}\\ \dfrac{x^2}{y^2}+\dfrac{z^2}{x^2}\ge2\sqrt{\dfrac{x^2z^2}{x^2y^2}}=\dfrac{2z}{y}\)

Cộng vế theo vế 

\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)\ge2\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\)

\(\LeftrightarrowĐpcm\)

Phạm Kim Oanh
8 tháng 10 2021 lúc 20:36

Thầy Ngô Văn Thái undefined

Yim Yim
Xem chi tiết
Phùng Minh Quân
16 tháng 5 2020 lúc 18:34

\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)

Khách vãng lai đã xóa
tth_new
27 tháng 6 2020 lúc 20:45

\(VT-VP=\Sigma\frac{\left(x+y\right)\left(x-y\right)^2}{y^2}\ge0\)

Khách vãng lai đã xóa
kobikdau
Xem chi tiết
nguyễn cẩm ly
Xem chi tiết
Trần Minh Hoàng
14 tháng 1 2021 lúc 18:32

Bất đẳng thức cần chứng minh tương đương:

\(y+2\ge\left(2-x\right)\left(2-z\right)\left(2-y\right)\).

Theo bất đẳng thức AM - GM: \(\left(2-x\right)\left(2-z\right)\le\dfrac{\left(4-x-z\right)^2}{4}=\dfrac{\left(2-y\right)^2}{4}\).

Do đó ta chỉ cần chứng minh:

\(y+2\ge\dfrac{\left(2-y\right)^3}{4}\).

Mặt khác, bđt trên tương đương: \(\dfrac{y\left[\left(y-3\right)^2+7\right]}{4}\ge0\) (luôn đúng).

Do đó bđt ban đầu cũng đúng.

Đẳng thức xảy ra khi y = 0; x = z = 1.

 

 

Hải Đăng
Xem chi tiết
Cố Tử Thần
Xem chi tiết
Đặng Viết Thái
13 tháng 3 2019 lúc 20:36

bé hơn hoặc bằng 15 nha bn

Cố Tử Thần
13 tháng 3 2019 lúc 20:37

bé hơn hoặc bằng 11 nha bn

bn làm ko đc thì đừng ns

thầy mik làm đc ra rồi

nhưng bắt mik làm lại thôi bn à

Đặng Viết Thái
13 tháng 3 2019 lúc 20:40

ta có:

\(\left(x+1\right)\left(x-3\right)\le0\)

\(\Leftrightarrow x^2-2x-3\le0\)

\(\Leftrightarrow x^2\le2x+3\)

Tương tự:

CR7 kathy
Xem chi tiết
ミ★kͥ-yͣeͫt★彡
19 tháng 9 2019 lúc 9:17

Áp dụng BĐT Cauchy cho 3 số dương, ta được:

\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)

\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)

\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)

\(\Rightarrow\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\)\(+\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\)

\(+\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}.3=\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(đpcm\right)\)

Tùng Nguyễn Văn
Xem chi tiết
Kiệt Nguyễn
9 tháng 10 2020 lúc 20:11

Ta có: \(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\)(1)

\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{zx}\)(2)

\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)(3)

Nhân vế theo vế ba đẳng thức (1), (2), (3), ta được: \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)

\(\Rightarrow\orbr{\begin{cases}\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\left(^∗\right)\\x^2y^2z^2=1\end{cases}}\)

Từ (*) ta giả sử x - y = 0 thì x = y khi đó \(\frac{1}{y}=\frac{1}{z}\Rightarrow y=z\)suy ra x = y = z. Tương tự đối với y - z = 0; z - x = 0

Vậy x = y = z hoặc x2y2z2 = 1

Khách vãng lai đã xóa