\(\text{Cách 1: Áp dụng BĐT Svacxo: }\)
\(\text{Ta có:}\)
\(\frac{\left[\left(x+y+z\right)^2\right]}{3}\le x^2+y^2+z^2\)
\(\Rightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)
\(\text{Dấu đẳng thức xảy ra khi x=y=z}\)
Cách 2:Biến đổi tương đương:
(x + y + z)^2=< 3(x^2 + y^2 + z^2)
<=> x^2 + y^2 + z^2 + 2xy + yz + 2xz =< 3x^2 + 3y^2 + 3z^2
<=> (x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2) >=0
<=> (x - y)^2 + (y - z)^2 + (z - x)^2 >= 0 (đúng)
Dấu = xảy ra khi x = y = z
Cách 2:Biến đổi tương đương:
(x + y + z)^2=< 3(x^2 + y^2 + z^2)
<=> x^2 + y^2 + z^2 + 2xy + yz + 2xz =< 3x^2 + 3y^2 + 3z^2
<=> (x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2) >=0
<=> (x - y)^2 + (y - z)^2 + (z - x)^2 >= 0 (đúng)
Dấu = xảy ra khi x = y = z
oOo Không đủ can đảm để oOo :đấy nhé mày copy bài tao còn sủa làm éo j