HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
mk chỉ là 1 người lạ đi ngang qua cuộc cãi vã của các bạn
Cho 3 số thực không âm x ,y ,z thỏa mãn x + y + z = 2 . Chứng minh rằng : x + 2y + z >= (2 - x)(2 - y)(2 - z)
Do x,y∈Z và 3x+2y=1 ⇒xy<0
3x+2y=1⇔y= -x+\(\dfrac{1-x}{2}\)
Đặt \(\dfrac{1-x}{2}\)=t (t ∈ Z)
⇒x = 1 - 2t ; y = 3t - 1
khi đó : H = t\(^2\) -3t + |t| -1
nếu t ≥ 0⇒ H =( t -1 ) - 2 ≥ - 2
Dấu "=" xảy ra ⇔t=1
nếu t < 0 ⇒ H = t\(^2\) -4t - 1 > -1> -2
vậy GTNN của H là -2 khi t=1⇒ \(\begin{cases}x=-1\\y=2\end{cases}\)
cho ác số dương x ,y ,z thả mãn x+y+z=3.Tìm GTLN của
B=\(\sqrt{\dfrac{xy}{xy+3z}}\)+\(\sqrt{\dfrac{yz}{yz+3x}}\)+\(\sqrt{\dfrac{zx}{zx+3y}}\)