Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
slyn
Xem chi tiết
Bùi Việt Anh
21 tháng 3 2022 lúc 21:20

a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)

\(\Leftrightarrow\)a^2+2ab+b^2>=4ab

\(\Leftrightarrow\)a^2-2ab+b^2>=0

\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)

Bùi Việt Anh
21 tháng 3 2022 lúc 21:25

b,\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\) 

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng

manh nguyenvan
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 7 2023 lúc 23:59

a: (sina+cosa)^2

=sin^2a+cos^2a+2*sina*cosa

=1+sin2a

b: \(cos^4a-sin^4a=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)\)

\(=cos^2a-sin^2a=cos2a\)

Nguyễn Thị Thanh Nhàn
Xem chi tiết
Luân Đào
10 tháng 5 2019 lúc 20:25

\(a^2+b^2\ge\frac{1}{2}\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) đúng

Vậy ta có đpcm

Kiêm Hùng
10 tháng 5 2019 lúc 20:35

Không chắc là đúng đâu nhé :D

\(a^2+b^2\ge\frac{1}{2}\)

\(\Leftrightarrow a^2+b^2-\frac{a+b}{2}\ge0\)

\(\Leftrightarrow2a^2+2b^2-a-b\ge0\)

\(\Leftrightarrow2a\left(a+b\right)-\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(2a-1\right)\left(a+b\right)\ge0\)

\(\Leftrightarrow2a-1\ge0\)

\(\Leftrightarrow a\ge\frac{1}{2}\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

nguyễn ngọc dinh
10 tháng 5 2019 lúc 21:29

Áp dụng BĐT bunhiacopxki ta có:

\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2.\left(a^2+b^2\right)\ge1\)

\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)

Dấu " = " xảy ra <=> a=b=0,5

Trần Huy Vlogs
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
18 tháng 3 2018 lúc 7:28

Ta có :

\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow a^2+b^2+1-ab-a-b\ge0\)

\(\Leftrightarrow2a^2+2b^2-2ab-2a-2b+2\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) ( đúng)

Kiên Lê Trung
Xem chi tiết
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 21:56

a) Ta có: \(\left(a-1\right)^2\ge0\forall a\)

\(\Leftrightarrow a^2-2a+1\ge0\forall a\)

\(\Leftrightarrow a^2+2a+1\ge4a\forall a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\)(đpcm)

HT2k02
10 tháng 4 2021 lúc 21:58

b) Áp dụng bất đẳng thức Cosi ta có:

\(a+1\ge2\sqrt{a};b+1\ge2\sqrt{b};c+1\ge2\sqrt{c}\\ \Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)

Dấu = xảy ra khi và chỉ khi a=b=c=1