Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rhider
Xem chi tiết
Đào Linh
Xem chi tiết

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

Kim Taehyung
Xem chi tiết
Kim Taehyung
Xem chi tiết
Pham Van Hung
18 tháng 2 2019 lúc 19:14

\(1955\equiv-1\) (mod 3)

\(\Rightarrow1955^{1958}\equiv\left(-1\right)^{1958}\) (mod 3)

\(\Rightarrow1955^{1958}\equiv1\) (mod 3)

hay 19551958 chia 3 dư 1 (1)

\(34\equiv1\) (mod 3)

\(\Rightarrow34^{1958}\equiv\left(-1\right)^{1958}\) (mod 3)

\(\Rightarrow34^{1958}\equiv1\) (mod 3)

hay 341958 chia 3 dư 1 (2)

Từ (1) và (2) ta được: 19551958 + 341958 chia 3 dư 2

Mà số chia 3 dư 2 không thể là số chính phương

Do đó: 19551958 + 341958 không là số chính phương

Chú ý: \(\equiv\) là kí hiệu của đồng dư nhé.

Kim Taehyung
18 tháng 2 2019 lúc 19:35

I'M SORRY!!!

ĐỀ BÀI ĐÚNG LÀ:CMR: 11551958   +   341958   không là SỐ CHÍNH PHƯƠNG

Phạm Thị Thủy Tiên
Xem chi tiết
Akai Haruma
14 tháng 1 lúc 0:47

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

The Pham
Xem chi tiết
Ngọc Vũ
Xem chi tiết

Do n lẻ \(\Rightarrow n=2k+1\)

Đặt \(a=7^n+24=7^{2k+1}+24=7.49^k+24\)

Do \(\left\{{}\begin{matrix}49\equiv1\left(mod4\right)\\7\equiv3\left(mod4\right)\\24\equiv0\left(mod4\right)\end{matrix}\right.\) \(\Rightarrow7.49^k+24\equiv3\left(mod4\right)\)

Mà các số chính phương chia 4 chỉ có các số dư 0 hoặc 1

\(\Rightarrow a\) không thể là SCP hay \(7^n+24\) ko là SCP với mọi số tự nhiên lẻ n

Lê Minh Thuận
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 lúc 20:49

\(27\equiv0\left(mod3\right)\Rightarrow27^{2021}\equiv0\left(mod3\right)\)

\(34\equiv1\left(mod3\right)\Rightarrow34^{2020}\equiv1\left(mod3\right)\)

\(\Rightarrow27^{2021}+34^{2022}+1\equiv2\left(mod3\right)\)

Mà các số chính phương chia 3 chỉ có số dư 0 hoặc 1

\(\Rightarrow27^{2021}+34^{2022}+1\) không thể là số chính phương (do nó chia 3 dư 2)

Lê Trọng Quý
Xem chi tiết