Tính:
a) \(y1^2+2^2+3^2+...+13^2\)
b)\(1^2+2^2+4^2+6^2+...+26^2\)
Tính:
a) -5/7(14/5 - 7/10) : |-2/3| - 3/4(8/9 + 16/3) + 10/3(1/3 + 1/5)
b) 17/-26(1/6 - 5/3) : 17/13 - 20/3(2/5 - 1/4) + 2/3(6/5 - 9/2)
c) -8/9(9/8 - 3/2) + 5/4 : (5/2 - 15/4) - 3/4(10/9 - 8/3) : (-1/3)
d) 21/10 : (12/5 - 9/10) . (-4/7) - 3/2(1/6 - 7/12) + 1/5(3/2 - 1/4)
a) Ta có: \(\dfrac{-5}{7}\left(\dfrac{14}{5}-\dfrac{7}{10}\right):\left|-\dfrac{2}{3}\right|-\dfrac{3}{4}\left(\dfrac{8}{9}+\dfrac{16}{3}\right)+\dfrac{10}{3}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{-5}{7}\cdot\dfrac{3}{2}\cdot\dfrac{21}{10}-\dfrac{3}{4}\cdot\dfrac{56}{3}+\dfrac{10}{3}\cdot\dfrac{8}{15}\)
\(=\dfrac{-9}{4}-14+\dfrac{16}{9}\)
\(=\dfrac{-1621}{126}\)
b) Ta có: \(\dfrac{17}{-26}\cdot\left(\dfrac{1}{6}-\dfrac{5}{3}\right):\dfrac{17}{13}-\dfrac{20}{3}\left(\dfrac{2}{5}-\dfrac{1}{4}\right)+\dfrac{2}{3}\left(\dfrac{6}{5}-\dfrac{9}{2}\right)\)
\(=\dfrac{-17}{26}\cdot\dfrac{13}{17}\cdot\dfrac{-3}{2}-\dfrac{20}{3}\cdot\dfrac{3}{20}+\dfrac{2}{3}\cdot\dfrac{-33}{10}\)
\(=\dfrac{3}{4}-1-\dfrac{11}{5}\)
\(=-\dfrac{49}{20}\)
Tính:
a, 8.( -9/12 )
b, ( -14/5 ) . (-10)
c, 9. ( 4/-3 )
d, -15. ( -5/6 )
e, 13. ( -2/7 )
f, 7/26. ( -13 )
\(a,8.\left(\dfrac{-9}{12}\right)=\dfrac{8.\left(-9\right)}{12}=\dfrac{-72}{12}=-6\\ b,\left(\dfrac{-14}{5}\right).\left(-10\right)=\dfrac{\left(-14\right).\left(-10\right)}{5}=\dfrac{140}{5}=28\\ c,9.\left(\dfrac{4}{-3}\right)=\dfrac{9.\left(-4\right)}{3}=\dfrac{-36}{3}=-12\\ d,-15.\left(\dfrac{-5}{6}\right)=\dfrac{\left(-15\right).\left(-5\right)}{6}=\dfrac{75}{6}\\ e,13.\left(\dfrac{-2}{7}\right)=\dfrac{13.\left(-2\right)}{7}=\dfrac{-26}{7}\\ f,\dfrac{7}{26}.\left(-13\right)=\dfrac{7.\left(-13\right)}{26}=\dfrac{-91}{26}\)
a, 8.( -9/12 )=-6
b, ( -14/5 ) . (-10)=28
c, 9. ( 4/-3 )=-12
d, -15. ( -5/6 )=25/2
e, 13. ( -2/7 )-36/7
f, 7/26. ( -13 )=-7/2
bài 5 Tính:
a) \(\sqrt{6-2\sqrt{5}}\)
b)\(\sqrt{7-4\sqrt{3}}\)
c)\(\sqrt{3-2\sqrt{2}}\) -\(\sqrt{6-4\sqrt{2}}\)
d)\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
Lời giải:
a. \(\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}.\sqrt{1}+1}=\sqrt{(\sqrt{5}-1)^2}=\sqrt{5}-1\)
b. \(\sqrt{7-4\sqrt{3}}=\sqrt{4-2\sqrt{4}.\sqrt{3}+3}=\sqrt{(\sqrt{4}-\sqrt{3})^2}=\sqrt{4}-\sqrt{3}=2-\sqrt{3}\)
c.
\(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}-\sqrt{4-4\sqrt{2}+2}\)
\(=\sqrt{(\sqrt{2}-1)^2}-\sqrt{(\sqrt{4}-\sqrt{2})^2}\)
\(=|\sqrt{2}-1|-|\sqrt{4}-\sqrt{2}|=\sqrt{2}-1-(2-\sqrt{2})=2\sqrt{2}-3\)
d.
\(=\sqrt{13+30\sqrt{2+\sqrt{(\sqrt{8}+1)^2}}}=\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\)
\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\sqrt{(\sqrt{2}+1)^2}}\)
\(=\sqrt{13+30(\sqrt{2}+1)}=\sqrt{43+30\sqrt{2}}=\sqrt{18+2\sqrt{18.25}+25}\)
\(=\sqrt{(\sqrt{18}+\sqrt{25})^2}=\sqrt{18}+\sqrt{25}=5+3\sqrt{2}\)
a) \(\sqrt{6-2\sqrt{5}}=\sqrt{5}-1\)
b) \(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)
c) \(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2}-1-2+\sqrt{2}=-3+2\sqrt{2}\)
d) Ta có: \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{2+1+2\sqrt{2}}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}\)
\(=5+3\sqrt{2}\)
Thực hiện phép tính:
1,-4/7 + 2/3x -9/14
2,17/13 - ( 4/13 - 11 )
3, 8 2/7 - ( 3 4/9 + 4 2/7 )
5, ( 2/3 - 1 1/2): 4/3 + 1/2
6, -5/13 + 2/5 + -8/13 + 3/5 - 3/7
7, 6/5 x 3/7 + 6/5 : 7/10 + 6/5
\(1,-\dfrac{4}{7}+\dfrac{2}{3}\times\dfrac{-9}{14}\)
\(=\dfrac{-4}{7}+\dfrac{-18}{42}\)
\(=\dfrac{-4\times6}{7\times6}+\dfrac{-18}{42}\)
\(=\dfrac{-20}{42}+\dfrac{-18}{42}\)
\(=-\dfrac{38}{42}\)
\(=-\dfrac{19}{21}\)
\(2,\dfrac{17}{13}-\left(\dfrac{4}{13}-11\right)\)
\(=\dfrac{17}{13}-\dfrac{4}{13}+11\)
\(=\dfrac{13}{13}+11\)
\(=1+11\)
\(=12\)
\(3,8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\)
\(=\dfrac{58}{7}-\left(\dfrac{31}{9}+\dfrac{30}{7}\right)\)
\(=\dfrac{58}{7}-\dfrac{31}{9}-\dfrac{30}{7}\)
\(=\dfrac{58}{7}-\dfrac{30}{7}-\dfrac{31}{9}\)
\(=\dfrac{28}{7}-\dfrac{31}{9}\)
\(=\dfrac{28\times9}{7\times9}-\dfrac{31\times7}{9\times7}\)
\(=\dfrac{252}{63}-\dfrac{217}{63}\)
\(=\dfrac{35}{63}\)
\(=\dfrac{5}{9}\)
\(5,\left(\dfrac{2}{3}-1\dfrac{1}{2}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\left(\dfrac{2}{3}-\dfrac{3}{2}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\left(\dfrac{2\times2}{3\times2}-\dfrac{3\times3}{2\times3}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\left(\dfrac{4}{6}-\dfrac{9}{6}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\dfrac{-5}{6}:\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\dfrac{-5}{6}\times\dfrac{3}{4}+\dfrac{1}{2}\)
\(=\dfrac{-15}{24}+\dfrac{1}{2}\)
\(=\dfrac{-15}{24}+\dfrac{1\times12}{2\times12}\)
\(=\dfrac{-15}{24}+\dfrac{12}{24}\)
\(=\dfrac{-3}{24}\)
\(=-\dfrac{1}{8}\)
\(6,\dfrac{-5}{13}+\dfrac{2}{5}+\dfrac{-8}{13}+\dfrac{3}{5}-\dfrac{3}{7}\)
\(=\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)+\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{3}{7}\)
\(=\dfrac{-13}{13}+\dfrac{5}{5}-\dfrac{3}{7}\)
\(=-1+1-\dfrac{3}{7}\)
\(=-\dfrac{3}{7}\)
\(7,\dfrac{6}{5}\times\dfrac{3}{7}+\dfrac{6}{5}:\dfrac{7}{10}+\dfrac{6}{5}\)
\(=\dfrac{6}{5}\times\dfrac{3}{7}+\dfrac{6}{5}\times\dfrac{10}{7}+\dfrac{6}{5}\)
\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+1\right)\)
\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+\dfrac{1\times7}{1\times7}\right)\)
\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+\dfrac{7}{7}\right)\)
\(=\dfrac{6}{5}\times\dfrac{20}{7}\)
\(=\dfrac{120}{35}\)
\(=\dfrac{24}{7}\)
Tính:
a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1)\);
b) \((4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5)\);
c) \( - 3{x^2}(6{x^2} - 8x + 1)\);
d) \((4{x^2} + 2x + 1)(2x - 1)\);
e) \(({x^6} - 2{x^4} + {x^2}):( - 2{x^2})\);
g) \(({x^5} - {x^4} - 2{x^3}):({x^2} + x)\).
a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1) = ({x^2} + 3{x^2}) + (2x - 5x) + (3 + 1) = 4{x^2} - 3x + 4\);
b) \(\begin{array}{l}(4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5) = 4{x^3} - 2{x^2} - 6 - {x^3} + 7{x^2} - x + 5\\ = (4{x^3} - {x^3}) + ( - 2{x^2} + 7{x^2}) - x + ( - 6 + 5) = 3{x^3} + 5{x^2} - x - 1\end{array}\);
c) \(\begin{array}{l} - 3{x^2}(6{x^2} - 8x + 1) = - 3{x^2}.6{x^2} - - 3{x^2}.8x + - 3{x^2}.1\\ = - 18{x^{2 + 2}} + 24{x^{2 + 1}} - 3{x^2} = - 18{x^4} + 24{x^3} - 3{x^2}\end{array}\);
d) \(\begin{array}{l}(4{x^2} + 2x + 1)(2x - 1) = (4{x^2} + 2x + 1).2x - (4{x^2} + 2x + 1).1 = 4{x^2}.2x + 2x.2x + 1.2x - 4{x^2} - 2x - 1\\ = 8{x^{2 + 1}} + 4{x^{1 + 1}} + 2x - 4{x^2} - 2x - 1 = 8{x^3} + 4{x^2} + 2x - 4{x^2} - 2x - 1 = 8{x^3} - 1\end{array}\);
e) \(\begin{array}{l}({x^6} - 2{x^4} + {x^2}):( - 2{x^2}) = {x^6}:( - 2{x^2}) - 2{x^4}:( - 2{x^2}) + {x^2}:( - 2{x^2})\\ = - \dfrac{1}{2}{x^{6 - 2}} + {x^{4 - 2}} - \dfrac{1}{2}{x^{2 - 2}} = - \dfrac{1}{2}{x^4} + {x^2} - \dfrac{1}{2}.\end{array}\);
g)
\(({x^5} - {x^4} - 2{x^3}):({x^2} + x)=x^3-2x^2\)
Tính:
a) 2/3 + 1/6 - 7/12 = ...
b) (2/3 + 3/4) x 6 = ...
Bài1:Thực hiện phép tính:
a,(2^4.3.5^2):{450:[450-(4.5^3-2^3.5^2)]}
b,3^3.5^2-20{90-[164-2.(7^8:7^6+7^0)]}
c,[(18^7:18^6-17).2022-1986].5.1^2022-13^2.2020^0
Bài2:Tìm x:
a,(2^x+1)^2+3.(2^2+1)=2^2.10
b,3.(x-7)+2.(x+5)=41
(GIÚP MIK VỚI Ạ)
Bài 1.
\(a,\left(2^4\cdot3\cdot5^2\right):\left\{450:\left[450-\left(4\cdot5^3-2^3\cdot5^2\right)\right]\right\}\)
\(=\left(16\cdot3\cdot25\right):\left\{450:\left[450- \left(4\cdot125-8\cdot25\right)\right]\right\}\)
\(=\left(48\cdot25\right):\left\{450:\left[450-\left(500-200\right)\right]\right\}\)
\(=1200:\left[450:\left(450-300\right)\right]\)
\(=1200:\left(450:150\right)\)
\(=1200:3\)
\(=400\)
\(---\)
\(b,3^3\cdot5^2-20\left\{90-\left[164-2\cdot\left(7^8:7^6+7^0\right)\right]\right\}\)
\(=27\cdot25-20\left\{90-\left[164-2\cdot\left(7^2+1\right)\right]\right\}\)
\(=675-20\left\{90-\left[164-2\cdot\left(49+1\right)\right]\right\}\)
\(=675-20\left[90-\left(164-2\cdot50\right)\right]\)
\(=675-20\left[90-\left(164-100\right)\right]\)
\(=675-20\left(90-64\right)\)
\(=675-20\cdot26\)
\(=675-520\)
\(=155\)
\(---\)
\(c,\left[\left(18^7:18^6-17\right)\cdot2022-1986\right]\cdot5\cdot1^{2022}-13^2\cdot2020^0\)
\(=\left[\left(18-17\right)\cdot2022-1986\right]\cdot5\cdot1-169\cdot1\)
\(=\left(1\cdot2022-1986\right)\cdot5-169\)
\(=\left(2022-1986\right)\cdot5-169\)
\(=36\cdot5-169\)
\(=180-169\)
\(=11\)
Bài 2.
\(a) (2^x+1)^2+3\cdot(2^2+1)=2^2\cdot10\\\Rightarrow (2^x+1)^2+3\cdot(4+1)=4\cdot10\\\Rightarrow (2^x+1)^2+3\cdot5=40\\\Rightarrow (2^x+1)^2+15=40\\\Rightarrow (2^x+1)^2=40-15\\\Rightarrow (2^x+1)^2=25\\\Rightarrow (2^x+1)^2= (\pm 5)^2\\\Rightarrow \left[\begin{array}{} 2^x+1=5\\ 2^x+1=-5 \end{array} \right.\\ \Rightarrow \left[\begin{array}{} 2^x=4\\ 2^x=-6 (vô.lí) \end{array} \right. \\ \Rightarrow 2^x=2^2\\\Rightarrow x=2\)
Vậy \(x=2\).
\(---\)
\(b)3\cdot(x-7)+2\cdot(x+5)=41\\\Rightarrow 3\cdot x+3\cdot(-7)+2\cdot x+2\cdot5=41\\\Rightarrow 3x-21+2x+10=41\\\Rightarrow (3x+2x)+(-21+10)=41\\\Rightarrow 5x-11=41\\\Rightarrow 5x=41+11\\\Rightarrow 5x=52\\\Rightarrow x=\dfrac{52}{5}\)
Vậy \(x=\dfrac{52}{5}\).
\(Toru\)
Tính:
a, 3/4 x (5/6 + 2/3)=
b, 3/2 - 2/3 : 2=
a) 3/4+2/3+3/5
b) 1/2 * 9/13 chia 27/26
c) 2/7*1/9+2/7*2/9+1/3*5/7
d) 11 chia 5/2 +11 chia 7/3 +11 chia 35/6
`@` `\text {Ans}`
`\downarrow`
`a)`
\(\dfrac{3}{4}+\dfrac{2}{3}+\dfrac{3}{5}\)
`=`\(\dfrac{9}{12}+\dfrac{8}{12}+\dfrac{3}{5}\)
`=`\(\dfrac{17}{12}+\dfrac{3}{5}\)
`=`\(\dfrac{85}{60}+\dfrac{36}{60}\)
`=`\(\dfrac{121}{60}\)
`b)`
\(\dfrac{1}{2}\cdot\dfrac{9}{13}\div\dfrac{27}{26}\)
`=`\(\dfrac{1}{2}\cdot\dfrac{9}{13}\cdot\dfrac{26}{27}\)
`=`\(\dfrac{1}{2}\cdot\dfrac{2}{3}\)
`=`\(\dfrac{1}{3}\)
`c)`
\(\dfrac{2}{7}\cdot\dfrac{1}{9}+\dfrac{2}{7}\cdot\dfrac{2}{9}+\dfrac{1}{3}\cdot\dfrac{5}{7}\)
`=`\(\dfrac{2}{7}\cdot\left(\dfrac{1}{9}+\dfrac{2}{9}\right)+\dfrac{1}{3}\cdot\dfrac{5}{7}\)
`=`\(\dfrac{2}{7}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{5}{7}\)
`=`\(\dfrac{1}{3}\cdot\left(\dfrac{2}{7}+\dfrac{5}{7}\right)\)
`=`\(\dfrac{1}{3}\cdot1=\dfrac{1}{3}\)
`d)`
\(11\div\dfrac{5}{2}+11\div\dfrac{7}{3}+11\div\dfrac{35}{6}\)
`=`\(11\cdot\dfrac{2}{5}+11\cdot\dfrac{3}{7}+11\cdot\dfrac{6}{35}\)
`=`\(11\cdot\left(\dfrac{2}{5}+\dfrac{3}{7}+\dfrac{6}{35}\right)\)
`=`\(11\cdot1=11\)
a) 3/4 + 2/3 + 3/5 = 45/60 + 40/60 + 36/60 = 121/60
b) 1/2 x 9/13 : 27/26 = 9/26 x 26/27 = 1/3
c) 2/7 x 1/9 + 2/7 x 2/9 + 1/3 x 5/7 = 2/7 x (1/9 + 2/9) + 5/21 = 2/7 x 1/3 + 5/21 = 2/21 + 5/21 = 1/3
d) 11 : 5/2 + 11 : 7:3 + 11 : 35/6 = 11 x (2/5 + 3/7 + 6/35) = 11 x 1 = 11