Giải pt: x^4 - 4x^3 + 6x^2 - 4x - 15=0
giải pt :
a, \(4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{16x^4+4x^2+1}=0\)
b, \(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{x^4+x^2+1}=0\)
a.
\(\Leftrightarrow4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-2x+1}=a>0\\\sqrt{4x^2+2x+1}=b>0\end{matrix}\right.\) ta được:
\(2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)
\(\Leftrightarrow\left(a-\dfrac{b}{\sqrt{3}}\right)\left(2a+\sqrt{3}b\right)=0\)
\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}\)
\(\Leftrightarrow3a^2=b^2\)
\(\Leftrightarrow3\left(4x^2-2x+1\right)=4x^2+2x+1\)
\(\Leftrightarrow...\)
b.
\(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)
Lặp lại cách làm câu a
a) Tìm TXĐ của biều thức. Với giá trị nào của x biểu thức vô nghĩa?
\(\dfrac{2-3x}{\dfrac{3x-2}{5}-\dfrac{x-4}{3}}\)
b) Tìm TXĐ của PT rồi giải PT:
\(\dfrac{3}{4x-20}\) + \(\dfrac{15}{50-2x^2}\) + \(\dfrac{7}{6x+30}\) = 0
a) Để biểu thức vô nghĩa thì \(\dfrac{3x-2}{5}-\dfrac{x-4}{3}=0\)
\(\Leftrightarrow\dfrac{3x-2}{5}=\dfrac{x-4}{3}\)
\(\Leftrightarrow3\left(3x-2\right)=5\left(x-4\right)\)
\(\Leftrightarrow9x-6=5x-20\)
\(\Leftrightarrow9x-5x=-20+6\)
\(\Leftrightarrow4x=-14\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
GIẢI CÁC PT SAU:
x2 - 6x + 9=\(4\sqrt{x^2-6x+6}\)
x2 - x + 8 - \(4\sqrt{x^2-x+4}=0\)
x2 + \(\sqrt{4x^2-12x+44}=3x+4\)
Giải phương trình
\(x^4-4x^3+6x^2-4x-15=0\)
Ta có : \(x^4-4x^3+6x^2-4x-15=0\)
=> \(x^4-3x^3-x^3+3x^2+3x^2-9x+5x-15=0\)
=> \(x^3\left(x-3\right)-x^2\left(x-3\right)+3x\left(x-3\right)+5\left(x-3\right)=0\)
=> \(\left(x-3\right)\left(x^3-x^2+3x+5\right)=0\)
=> \(\left(x-3\right)\left(x^3+x^2-2x^2-2x+5x+5\right)=0\)
=> \(\left(x-3\right)\left(x^2\left(x+1\right)-2x\left(x+1\right)+5\left(x+1\right)\right)=0\)
=> \(\left(x-3\right)\left(x+1\right)\left(x^2-2x+5\right)=0\)
=> \(\left(x-3\right)\left(x+1\right)\left(x^2-2x+1+4\right)=0\)
=> \(\left(x-3\right)\left(x+1\right)\left(\left(x-1\right)^2+4\right)=0\)
Mà \(\left(x-1\right)^2+4>0\)
=> \(\left(x-3\right)\left(x+1\right)=0\)
=> \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{3;-1\right\}\)
Phương trình tương đương:
\(\begin{array}{l} {x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 16\\ \Leftrightarrow {\left( {x - 1} \right)^4} = 16\\ \Leftrightarrow {\left[ {{{\left( {x - 1} \right)}^2}} \right]^2} - \left( {{2^2}} \right) = 0\\ \Leftrightarrow \left[ {{{\left( {x - 1} \right)}^2} - {2^2}} \right]\left[ {{{\left( {x - 1} \right)}^2} + {2^2}} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l} {\left( {x - 1} \right)^2} = 4 \Leftrightarrow \left[ \begin{array}{l} x - 1 = 2\\ x - 1 = - 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 3\\ x = - 1 \end{array} \right.\\ {\left( {x - 1} \right)^2} = - 4 (VN) \end{array} \right. \end{array}\)
\(\Leftrightarrow y\left(y+1\right)=x\left(x+1\right)\left(x^2+1\right)\)
Giải pt :
a)x5+x-1=0
b)x4+6x3+7x2-6x+1=0
c)x(x+4)(x+6)(4x+10)+128=0
a)x5+x-1=0
<=>(x5+x4+x3+x2+x)-(x4+x3+x2+x+1)=0
<=>(x4+x3+x2+x+1)(x-1)=0
Do x4+x3+x2+x+1>0
=>x+1=0
<=>x=1
giải nhữg pt sau:
a) 4x^3 - 13x^2 +9x - 18 = 0
b) x^3 - 9x^2 +6x +16 = 0
c) x^3 - 4x^2 - 8x + 8 = 0
a) <=> 4x^3 - 12x^2 - x^2 + 3x + 6x - 18 = 0
<=> 4x^2 (x - 3) - x(x - 3) + 6(x - 3) = 0
<=> (x - 3)(4x^2 - x + 6) = 0
xét 2 th
. x - 3 = 0 <=> x = 3
. 4x^2 - x + 6 = 0
<=> 4x^2 + 2.(1/2)x + 1/4 + 23/4 = 0
<=> (4x + 1/2)^2 = -23/4
.... phần sau bạn tự làm nhé
vậy pt trên có nghiệm là ...
. mik bận nên chỉ làm như vậy thôi.. những ý sau thì tách tương tự
c) => x3 + 2x2 - 6x2 - 12x + 4x + 8 = 0
=> (x3 + 2x2) - (6x2 + 12x) + (4x + 8) = 0
=> x2. (x +2) - 6x. (x + 2) + 4.(x + 2) =0
=> (x +2).(x2 - 6x + 4) = 0
=> x+ 2 = 0 hoặc x2 - 6x + 4 = 0
+) x+ 2 =0 => x = -2
+) x2 - 6x + 4 = 0 => x2 - 2.x.3 + 9 - 5 = 0 => (x -3)2 = 5
=> x - 3 = \(\sqrt{5}\) hoặc x - 3 = - \(\sqrt{5}\)
=> x = 3 + \(\sqrt{5}\) hoặc x = 3 - \(\sqrt{5}\)
vậy...
Giải pT sau : a.x(4x-1)^2(2x-1)=9 b.(x^2+5x+6)(x^2-11x+30)=180 c.6x^4-5x^3-38x^2-5x+6=0
c: =>(x+2)(x+3)(x-5)(x-6)=180
=>(x^2-3x-10)(x^2-3x-18)=180
=>(x^2-3x)^2-28(x^2-3x)=0
=>x(x-3)(x-7)(x+4)=0
=>\(x\in\left\{0;3;7;-4\right\}\)
c: =>(x-3)(x+2)(2x+1)(3x-1)=0
=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
Giải PT : \(x^4+4x^3-10x^2-28x-15=0\)
\(x^4+4x^3+4x^2-14x^2-28x-15=0\)
\(\Leftrightarrow\left(x^2+2x\right)^2-14\left(x^2+2x\right)-15=0\)
Đặt \(x^2+2x=a\Rightarrow a^2-14a-15=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=15\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+2x=-1\\x^2+2x=15\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=0\\x^2+2x-15=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-5\\x=3\end{matrix}\right.\)
giải pt :
1)x4 + 4x3 + 12x2 +12x + 27= 0
2)x4 - 5x3 + 6x2 + 5x +1 = 0
a/ Chắc là bạn ghi nhầm đề? Số cuối là số 9 mới đúng, chứ 27 thì câu này vô nghiệm
\(x^4+4x^3+4x^2+8x^2+12x+27=0\)
\(\Leftrightarrow x^2\left(x+2\right)^2+8\left(x+\frac{3}{4}\right)^2+\frac{45}{2}=0\)
Vế phải dương nên pt vô nghiệm
b/ Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) ta được:
\(x^2+\frac{1}{x^2}-5\left(x-\frac{1}{x}\right)+6=0\)
Đặt \(x-\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2+2\)
\(\Rightarrow a^2+2-5a+6=0\)
\(\Leftrightarrow a^2-5a+8=0\Rightarrow\) pt vô nghiệm
Lại nhầm đề nữa???? Dấu thứ 2 là dấu + thì pt này có nghiệm đẹp