Tham khảo:
Giải phương trình \(x^4-4x^3+6x^2-4x-15=0\) - Hoc24
\(\Leftrightarrow x^4-3x^3-x^3+3x^2+3x^2-9x+5x-15=0\\ \Leftrightarrow\left(x-3\right)\left(x^3-x^2+3x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+x^2-2x^2-2x+5x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x^2-2x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\\left(x-1\right)^2+4=0\left(vn\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)