Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2021 lúc 21:11

Biến đổi tương đương:

\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)

\(\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã được chứng minh

𝓓𝓾𝔂 𝓐𝓷𝓱
23 tháng 1 2021 lúc 21:53

Cách khác so với anh Nguyễn Việt Lâm

Ta có: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)  (đpcm)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2021 lúc 21:06

BĐT này sai nha bạn.

Nó chỉ đúng khi \(x>0\)

𝓓𝓾𝔂 𝓐𝓷𝓱
23 tháng 1 2021 lúc 21:58

Với \(x>0\) thì bất đẳng thức tương đương với \(x^2+1\ge2x\)

\(\Leftrightarrow x^2-2x+1\ge0\) \(\Leftrightarrow\left(x-1\right)^2\ge0\) (luôn đúng)

\(\Rightarrow\) Điều cần chứng minh là đúng

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 10:52

\(a,VT=\dfrac{3y\cdot2x}{4\cdot2x}=\dfrac{6xy}{8x}=VP\\ b,VT=\dfrac{\left(x+y\right)\cdot3a\left(x+y\right)}{3a\cdot3a\left(x+y\right)}=\dfrac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}=VP\)

Sách Giáo Khoa
Xem chi tiết
Nguyễn Thị Huyền Anh
Xem chi tiết
Đinh Đức Hùng
6 tháng 4 2017 lúc 17:13

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(\Leftrightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)

\(\Leftrightarrow x^2+y^2+z^2+3-2x-2y-2z\ge0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)

Vậy \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

Nguyễn Thị Huyền Anh
6 tháng 4 2017 lúc 17:55

cảm ơn bạn nhiều

Trí Tiên亗
25 tháng 2 2020 lúc 10:30

Ta có : \(x^2+1\ge2x\) (1)

\(y^2+1\ge2y\) (2)

\(z^2+1\ge2z\) (3)

Cộng các vế của  (1) (2) (3) ta được :

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Khách vãng lai đã xóa
Quách Trần Gia Lạc
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2022 lúc 22:29

a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Kou Genmei
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Nguyễn Khang
10 tháng 11 2019 lúc 18:59

Giải xàm tí ạ!\(VT-VP=\frac{1}{2}\left[\left(x^2-3x+1\right)^2+\left(y^2-3y+1\right)^2+\left(x-y\right)^2\left(5-x-y\right)\left(x+y-1\right)\right]\ge0\)

=> qed

Khách vãng lai đã xóa
Nguyễn Linh Chi
12 tháng 11 2019 lúc 18:26

??? KHang ơi! Sai rồi ? Tại sao VT - Vp = 1/2. Dòng thứ 2 ??? 

Khách vãng lai đã xóa
tth_new
12 tháng 11 2019 lúc 18:52

Nguyễn Linh Chi còn khúc dưới nữa mà cô, tại nó dài quá nên olm ko hiển thị hết trng một dòng. Mà bài đó em cũng làm xàm:)

Khách vãng lai đã xóa
Vinh Thuy Duong
Xem chi tiết
Phí Đức
7 tháng 8 2021 lúc 22:25

a/ ĐK: $x\ne -5$

$\dfrac{6x^2+30x}{4}=\dfrac{6x(x+5)}{4}=\dfrac{3x(x+5)}{2}$ 

Đề này sai

b/ ĐK: $x\ne \pm 1$

$\dfrac{(x+2)(x+1)}{x^2-1}\\=\dfrac{(x+2)(x+1)}{(x-1)(x+1)}\\=\dfrac{x+2}{x-1}$

$\to$ ĐPCM

Trên con đường thành côn...
7 tháng 8 2021 lúc 22:25

Câu a sai đề nhé.

Nguyễn Huy Tú
7 tháng 8 2021 lúc 22:26

a, Xét \(VT=\dfrac{3x\left(x+5\right)}{2\left(x+5\right)}=\dfrac{3x}{2}\)

\(VP=\dfrac{6x^2+30x}{4}=\dfrac{6x\left(x+5\right)}{4}=\dfrac{3x\left(x+5\right)}{2}\)

Vậy \(VT\ne VP\)hay đpcm ko xảy ra 

b, \(VP=\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+2}{x-1}=VT\)

Vậy ta có đpcm