Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm thị ngà
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 13:02

a: \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=>\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=>\(2A+A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2+2^{100}-2^{99}+...+2^2-2\)

=>\(3A=2^{101}-2\)

=>\(A=\dfrac{2^{101}-2}{3}\)

b: Sửa đề: \(A=\dfrac{2\cdot8^4\cdot27^2+4\cdot6^9}{2^7\cdot6^7+2^7\cdot40\cdot9^4}\)

\(A=\dfrac{2\cdot2^{12}\cdot3^6+2^2\cdot2^9\cdot3^9}{2^7\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot3^8}\)

\(=\dfrac{2^{11}\cdot3^6\left(2^3+3^3\right)}{2^{10}\cdot3^7\left(2^4+5\cdot3\right)}\)

\(=\dfrac{2}{3}\cdot\dfrac{4+27}{16+15}=\dfrac{2}{3}\)

c: \(B=\dfrac{4^5\cdot9^4-2\cdot6^4}{2^{10}\cdot3^8+6^8\cdot20}\)

\(=\dfrac{2^{10}\cdot3^8-2\cdot2^4\cdot3^4}{2^{10}\cdot3^8+2^8\cdot2^2\cdot5\cdot3^8}\)

\(=\dfrac{2^5\cdot3^4\left(2^5\cdot3^4-1\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{1}{2^5\cdot3^4}\cdot\dfrac{32\cdot81-1}{6}\)

\(=\dfrac{2591}{2^6\cdot3^5}\)

 

Phạm thị ngà
13 tháng 11 2023 lúc 13:01

help

 

Nguyễn Hà My
Xem chi tiết
Nguyễn Tuấn Hùng
Xem chi tiết
HT.Phong (9A5)
22 tháng 7 2023 lúc 11:07

Số lượng số hạng:

\(\left(299-1\right):1+1=299\) (số hạng)

Tổng S là:
\(\left(299+1\right)\cdot299:2=44850\)

Nguyễn Thu Phương
23 tháng 7 2023 lúc 13:56

Số lượng số hạng:

 

\left(299-1\right):1+1=299(299−1):1+1=299 (số hạng)

 

Tổng S là:

\left(299+1\right)\cdot299:2=44850(299+1)⋅299:2=44850

Dương Thị Thảo Nguyên
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 12 2020 lúc 23:34

\(A=2^{100}-\left(2^{99}+2^{98}+...+2+1\right)\)

Đặt \(B=2^{99}+2^{98}+...+2+1\)

\(\Rightarrow2B=2^{100}+2^{99}+...+2^2+2\)

\(\Rightarrow2B-B=2^{100}-1\Leftrightarrow B=2^{100}-1\)

\(\Rightarrow A=2^{100}-\left(2^{100}-1\right)=1\)

Nguyễn Nhân Dương
Xem chi tiết
boi đz
5 tháng 8 2023 lúc 21:48

\(A=2^{100}-2^{99}+2^{98}-2^{97}+....-2^3+2^2-2+1\\ A=\left(2^{100}+2^{98}+...+2\right)-\left(2^{99}+2^{97}+...+1\right)\)

Gọi \(\left(2^{100}+2^{98}+...+2\right)\)là B

\(B=\left(2^{100}+2^{98}+...+2\right)\\ 2B=2^{102}+2^{100}+.....+2^2\\ 2B-B=\left(2^{102}+2^{100}+.....+2^2\right)-\left(2^{100}+2^{98}+...+2\right)\\ B=2^{102}-2\)

Gọi \(\left(2^{99}+2^{97}+...+1\right)\) là C

\(C=\left(2^{99}+2^{97}+...+1\right)\\ 2C=2^{101}+2^{99}+....+2\\ 2C-C=\left(2^{101}+2^{99}+9^{97}+...+2\right)-\left(2^{99}+9^{97}+...+1\right)\\ C=2^{101}-1\)

\(A=B+C\\ =>A=2^{102}-2+2^{101}-1\\ A=2^{101}\left(2+1\right)-3\\ A=2^{101}\cdot3-3\\ A=3\cdot\left(2^{101}-1\right)\)

Hà Quang Minh
5 tháng 8 2023 lúc 21:35

\(\dfrac{1}{2}A=2^{99}-2^{98}+...-1+\dfrac{1}{2}\\ \Rightarrow A-\dfrac{1}{2}A=2^{100}-\dfrac{1}{2}\\ \Rightarrow A=2^{101}-1\)

Xem chi tiết
Tử Nguyệt Hàn
2 tháng 10 2021 lúc 16:46

tham khảo 
https://olm.vn/hoi-dap/tim-kiem?q=A=2100-299-298-297-.........-22-2-1+.+t%C3%ADnh+A&id=52301

Lấp La Lấp Lánh
2 tháng 10 2021 lúc 16:47

\(A=2^{100}-2^{99}-2^{98}-...-2\)

\(\Rightarrow-2A=-2^{101}+2^{100}+2^{99}+...+2^2\)

\(\Rightarrow A-2A=2^{100}-2^{99}-...-2-2^{101}+2^{100}+...2^2\)

\(\Rightarrow-A=2^{100}+2^{100}-2^{101}-2\)

\(\Rightarrow-A=-2\Rightarrow A=2\)

NQQ No Pro
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2023 lúc 20:18

\(2^{100}-2^{99}+2^{98}-2^{97}+2^{96}-2^{95}+...+2^4-2^3+2^2\)

\(=\left(2^{100}-2^{99}+2^{98}\right)-\left(2^{97}-2^{96}+2^{95}\right)+...+\left(2^4-2^3+2^2\right)\)

\(=2^{96}\left(2^4-2^3+2^2\right)-2^{93}\left(2^4-2^3+2^2\right)+...+\left(2^4-2^3+2^2\right)\)

\(=12\left(2^{96}-2^{93}+...+1\right)⋮12\)

Hoàng Kiều Phương
Xem chi tiết
Vân Hoàng Nhật
17 tháng 3 2017 lúc 20:24

cho mk hỏi câu lớp mấy vậy bn

Hoàng Kiều Phương
17 tháng 3 2017 lúc 20:25

lớp 6 bn ak

Spiritual gems
17 tháng 3 2017 lúc 20:33

chẳng có qui luật gì cả. 1, 2, 3, 4...,298, 299 rồi sau đó là 2100 chẳng hợp gì cả

Xem chi tiết
Lấp La Lấp Lánh
2 tháng 10 2021 lúc 16:44

a) \(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)

b) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+...+3^{101}\)

\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)

\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)

c) \(C=5+5^2+...+5^{30}\)

\(\Rightarrow5C=5^2+5^3+...+5^{31}\)

\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)

\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)

d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)

\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)

\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)

cyfytfy
27 tháng 10 lúc 17:03

1990.1990 -1992.1988

 

Khánh Chi Trần
Xem chi tiết
Khánh Chi Trần
10 tháng 1 2022 lúc 20:05

Các bạn chỉ cần giúp mik câu c ạ

Minh Hiếu
10 tháng 1 2022 lúc 20:06

\(C=\dfrac{x^3}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

\(=\dfrac{x^3-x\left(x+2\right)+2\left(x-2\right)}{x^2-4}\)

\(=\dfrac{x^3-x^2-2x+2x-4}{x^2-4}\)

\(=\dfrac{x^3-x^2-4}{x^2-4}\)

ILoveMath
10 tháng 1 2022 lúc 20:10

a,\(C=\dfrac{x^3}{x^2-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)

\(\Rightarrow C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2+2x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow C=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow C=\dfrac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow C=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow C=\dfrac{\left(x^2-4\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow C=\dfrac{\left(x-2\right)\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow C=x-1\)

b, C=0\(\Rightarrow x-1=0\Rightarrow x=1\)

c, Để C nhận giá trị dương thì \(x-1\ge0\Rightarrow x\ge1\)