Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tamanh nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2021 lúc 22:16

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-1}{1}\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

the glory
Xem chi tiết
bảo nam trần
4 tháng 7 2023 lúc 13:58

a, \(VT=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)=a-b=VP\) đpcm

b,\(VT=1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}-\dfrac{a^2-a}{a-1}=1-\sqrt{a}+\sqrt{a}-a=1-a=VP\) đpcm

Gia Huy
4 tháng 7 2023 lúc 13:58

loading...  

09.Phạm Trần Duân
Xem chi tiết
Trần Tuấn Hoàng
26 tháng 4 2022 lúc 22:17

-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.

tamanh nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2021 lúc 21:38

a: \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Trần Thị Ngọc Diệp
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 20:58

Câu b bạn sửa lại đề

\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)

Nguyễn Lê Phước Thịnh
13 tháng 11 2021 lúc 21:01

a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

Ngọc Thư
Xem chi tiết
Võ Đông Anh Tuấn
21 tháng 5 2018 lúc 19:06

\(VT=\left(\dfrac{\sqrt{a}}{1-\sqrt{a}}+\dfrac{\sqrt{a}}{1+\sqrt{a}}\right):\dfrac{2\sqrt{a}}{a-1}\)

\(=\left(\dfrac{-\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}\left(\sqrt{a}-1\right)}{a-1}\right).\dfrac{a-1}{2\sqrt{a}}\)

\(=\left(\dfrac{-a-\sqrt{a}+a-\sqrt{a}}{a-1}\right).\dfrac{a-1}{2\sqrt{a}}=\dfrac{-2\sqrt{a}}{a-1}.\dfrac{a-1}{2\sqrt{a}}=-1=VP\)

Xem chi tiết
Nguyen
12 tháng 3 2019 lúc 20:43

C/m: \(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)\(\left(k\ge1,k\in\text{ℕ}\right)\)

Có: \(\dfrac{1}{\sqrt{k-1}+\sqrt{k}}>\dfrac{1}{\sqrt{k}+\sqrt{k+1}}\)

\(\Rightarrow\dfrac{2}{\sqrt{k-1}+\sqrt{k}}>\dfrac{1}{\sqrt{k}+\sqrt{k+1}}+\dfrac{1}{\sqrt{k-1}+\sqrt{k}}\)\(=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}=\sqrt{k+1}-\sqrt{k-1}\)

\(\Rightarrow2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}\right)>\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{81}=9-1=8\)

\(\Rightarrow\dfrac{1}{\sqrt{1}+\sqrt{2}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}>4\)(đpcm).

Nguyễn Việt Lâm
12 tháng 3 2019 lúc 20:45

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

Xét:

\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)

\(\Rightarrow B=\sqrt{81}-\sqrt{1}=8\)

Mặt khác, do \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}< \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{2}{\sqrt{1}+\sqrt{2}}\)

Tương tự: \(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}< \frac{2}{\sqrt{3}+\sqrt{4}}\) ....

\(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}< \frac{2}{\sqrt{79}+\sqrt{80}}\)

Cộng vế với vế ta được: \(2A>B=8\Rightarrow A>4\)

Ngân Nguyễn
Xem chi tiết
Trần Hữu Tuyển
26 tháng 10 2017 lúc 19:04

Biến đổi vế trái ta có:

\(\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}-\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}\right).\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{4}}\)

\(=\dfrac{1-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}.\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{4}}\)

\(=\dfrac{1-\sqrt{a}}{\sqrt{a}}.\dfrac{\sqrt{a}+1}{\sqrt{4}}\)

\(=\dfrac{a-1}{\sqrt{4a}}\)

Trần Hữu Tuyển
26 tháng 10 2017 lúc 19:04

đề này sai ko nhỉ

Trường Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2022 lúc 21:38

1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)