\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-1}{1}\)
\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-1}{1}\)
\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
a) Chứng minh đẳng thức sau:
\(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\left(\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\right)=\dfrac{\sqrt{a}-1}{\sqrt{a}}\) với a>0 và a khác 1
b) Tìm giá trị nhỏ nhất của A = \(x-2\sqrt{x+2}\)
1. chứng minh rằng các hằng đẳng thức sau với điều kiện các biểu thức tồn tại:
a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=a-b\)
b)\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\)
Chứng minh đẳng thức
a. \(\left[\dfrac{2}{3x}-\dfrac{2}{x+1}1.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}=\dfrac{2x}{x-1}\)
b. \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Bài : Ch.minh đẳng thức
\(\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)+ \(\left(1+\dfrac{a+\sqrt{a}}{1+\sqrt{a}}\right)\) = 1-a với a ≥ 0 và a ≠ 1
Cho biểu thức: Q = \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Chứng tỏ rằng Q xác định với a > 0,a \(\ne\) 4 và a \(\ne\) 1.
b) Tìm giá trị của a để Q dương.
Rút gọn biểu thức :
M = \(\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
( Với a lớn hơn hoặc bằng 0 ; a khác 1 )
A=\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)với a>0,a khác 1
a)rút gọn A
b)tính giá trị của A biết a=4+2\(\sqrt{3}\)
c)tìm a để A<0
Bài 1: Cho biểu thức:
P = \(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right).\left(\dfrac{3\sqrt{a}}{\sqrt{a}-1}-\dfrac{2+\sqrt{a}}{\sqrt{a}+1}\right)\)
a) Tìm ĐKXĐ và rút gọn P
b) Với giá trị nào của a thì P = \(\sqrt{a}+7\)
c) CMR: Với mọi giá trị thích hợp của a thì P > 6
Với \(a\ge0,a\ne1\), chứng minh \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=1\)