Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Nhất Bác
Xem chi tiết
Phạm Ngọc Minh Phước
Xem chi tiết
illumina
Xem chi tiết
Akai Haruma
29 tháng 5 2023 lúc 19:29

Bạn xem lại xem đã biết biểu thức đúng chưa vậy?

Quandung Le
Xem chi tiết
Incursion_03
3 tháng 11 2018 lúc 22:47

ĐKXĐ: x > 1

\(A=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}\)

 \(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+6\sqrt{x-1}+9}\)

 \(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}\)

 \(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+3\right|\)

 \(=\left|1-\sqrt{x-1}\right|+\sqrt{x-1}+3\ge1-\sqrt{x-1}+\sqrt{x-1}+3=4\)

\(\text{Dấu "=" xảy ra }\Leftrightarrow1-\sqrt{x-1}\ge0\)

                            \(\Leftrightarrow\sqrt{x-1}\le1\)

                            \(\Leftrightarrow x-1\le1\)

                           \(\Leftrightarrow x\le2\)

\(\text{Kết hợp ĐKXĐ ta được }1\le x\le2\)

\(\text{Vậy}\)\(A_{min}=4\Leftrightarrow1\le x\le2\)

Moon
Xem chi tiết
Akai Haruma
5 tháng 11 2023 lúc 18:56

Lời giải:
Ta có:
$A^2=x+4+6-x+2\sqrt{(x+4)(6-x)}=10+2\sqrt{(x+4)(6-x)}\geq 10$

$\Rightarrow A\geq \sqrt{10}$ (do $A\geq 0$)

Vậy $A_{\min}=\sqrt{10}$. Giá trị này đạt được khi $(x+4)(6-x)=0\Leftrightarrow x=-4$ hoặc $x=6$

----------------------

Áp dụng BĐT Bunhiacopkxy:

$A^2\leq (x+4+6-x)(1+1)=10.2=20$

$\Rightarrow A\leq \sqrt{20}$

Vậy $A_{\max}=\sqrt{20}$

em ơi
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 1 2021 lúc 17:07

\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)

\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)

\(\Rightarrow x-y=1\Rightarrow P=1\)

\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)

\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)

\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)

Đỗ Thu Hương
Xem chi tiết
Đặng Khánh
1 tháng 6 2021 lúc 22:02

\(M=\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)Áp dụng Cô si có

\(M\ge2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}=10\)

Dấu "=" \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\leftrightarrow x=4\)

Vậy GTNN của M = 10 <=> x = 4

bảo nam trần
1 tháng 6 2021 lúc 22:04

\(M=\dfrac{\left(x+6\sqrt{x}+9\right)+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)

Do \(\sqrt{x}\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}+3>0\\\dfrac{25}{\sqrt{x}+3}>0\end{matrix}\right.\)

Áp dụng bđt cô-si ta có: 

\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\dfrac{25}{\sqrt{x}+3}}=2\sqrt{25}=10\)

hay \(M\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)

Vậy GTNN của M = 10 khi x = 4

Linh Linh
1 tháng 6 2021 lúc 22:09

\(\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x+3}}\)

=\(\dfrac{\sqrt{x}+2.3.\sqrt{x}+3^2+25}{\sqrt{x}+3}\)

=\(\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}\)

=\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)

áp dụng cosi

M≥\(^2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}\)=10

\(\sqrt{x}+3\)=\(\dfrac{25}{\sqrt{x}+3}\)⇔x=4

vậy...

nam do duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 22:15

1: \(B=\dfrac{2\sqrt{x}-x-2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{-x}{\left(\sqrt{x}-2\right)\cdot\sqrt{x}}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)

 

 

Bống
Xem chi tiết