Lời giải:
Ta có:
$A^2=x+4+6-x+2\sqrt{(x+4)(6-x)}=10+2\sqrt{(x+4)(6-x)}\geq 10$
$\Rightarrow A\geq \sqrt{10}$ (do $A\geq 0$)
Vậy $A_{\min}=\sqrt{10}$. Giá trị này đạt được khi $(x+4)(6-x)=0\Leftrightarrow x=-4$ hoặc $x=6$
----------------------
Áp dụng BĐT Bunhiacopkxy:
$A^2\leq (x+4+6-x)(1+1)=10.2=20$
$\Rightarrow A\leq \sqrt{20}$
Vậy $A_{\max}=\sqrt{20}$