Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Nhi Trần
Xem chi tiết
dươngloan
Xem chi tiết
Hanh Nguyen
Xem chi tiết
_Guiltykamikk_
3 tháng 8 2018 lúc 19:34

\(A=\cos^215^o-\cos^225^o+\cos^235^o-\cos^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)

\(A=\sin^275^o-\sin^265^o+\sin^255^o-\sin^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)

\(A=\left(\sin^275^o+\cos^275^o\right)-\left(\sin^265^o+\cos^265^o\right)+\left(\sin^255^o+\cos^255^o\right)-\sin^245^o\)

\(A=1-1+1-\frac{1}{2}\)

\(A=\frac{1}{2}\)

Thảo Phạm
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
NGUYỄN VĂN TUẤN VIỆT
18 tháng 8 2021 lúc 18:01

a) sin 40 - cos 50 =0

b) sin230 + sin240 + sin250 + sin260 = 2

c) cos210 - cos220 + cos230 - cos240 - cos250 - cos270 + cos280 = - sin230

Khách vãng lai đã xóa
NGUYỄN TÀI ANH
18 tháng 8 2021 lúc 20:00

\(a.sin40^o-cos50^o=sin40^o-sin40^o=0\)
\(b.sin^230^o+sin^240^o+sin^250^o+sin^260^o=\left(sin^230^0+sin^260^o\right)+\left(sin^240^0+sin^250^o\right)=\left(sin^230^0+cos^230^o\right)+\left(sin^240+cos^240^o\right)=1+1=2\)
\(c.\left(cos^210^o+cos^280^o\right)-\left(cos^220^o+cos^270^0\right)-\left(cos^240^o-cos^250^o\right)+cos^230^o=\left(cos^210^o+sin^210^o\right)-\left(cos^220^o+sin^220^o\right)-\left(cos^240^o+sin^240^0\right)+cos^230^0=1-1-1+\dfrac{3}{4}=-\dfrac{1}{4}\)

Khách vãng lai đã xóa
CAO VĂN KHÁNH
18 tháng 8 2021 lúc 21:21

a) 0

b)2

c)3/4-1

Khách vãng lai đã xóa
Vũ Thị Tâm
Xem chi tiết
Vũ Thị Chi
Xem chi tiết
Nguyễn Mai Anh
3 tháng 7 2017 lúc 9:13

Ta áp dụng công thức: Nếu 2 góc phụ nhau thì:

sin góc này = cos góc kia và ngược lại

Kết hợp sử dụng công thức: \(\sin^2\alpha+\cos^2\alpha=1\)ta có:

\(A=\cos^220^o+\cos^230^o+\cos^240^o+\cos^250^o+\cos^260^o+\cos^270^o\)

\(=\cos^220^o+\cos^230^o+\cos^240^o+\sin^240^o+\sin^230^o+\sin^220^o\)

\(=\left(\cos^220^o+\sin^220^o\right)+\left(\cos^230^o+\sin^230^o\right)+\left(\cos^240^o+\sin^240^o\right)\)

\(=1+1+1=3\)

Ngọc Hà
Xem chi tiết
Thanh Tuấn
15 tháng 7 2021 lúc 12:43

what

 

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 13:30

Bài 2: 

Ta có: \(\cot\alpha=\dfrac{1}{\tan\alpha}\)

nên \(\cot\alpha=\dfrac{1}{3}\)

 

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:15

a)

Đặt  \(A = \left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)

Ta có: \(\left\{ \begin{array}{l}\cos {135^o} =  - \cos {45^o};\cos {180^o} =  - \cos {0^o}\\\tan {150^o} =  - \tan {30^o}\end{array} \right.\)

\( \Rightarrow A = \left( {2\sin {{30}^o} - \cos {{45}^o} + 3\tan {{30}^o}} \right).\left( { - \cos {0^o} - \cot {{60}^o}} \right)\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\left\{ \begin{array}{l}\sin {30^o} = \frac{1}{2};\tan {30^o} = \frac{{\sqrt 3 }}{3}\\\cos {45^o} = \frac{{\sqrt 2 }}{2};\cos {0^o} = 1;\cot {60^o} = \frac{{\sqrt 3 }}{3}\end{array} \right.\)

\( \Rightarrow A = \left( {2.\frac{1}{2} - \frac{{\sqrt 2 }}{2} + 3.\frac{{\sqrt 3 }}{3}} \right).\left( { - 1 - \frac{{\sqrt 3 }}{3}} \right)\)

\(\begin{array}{l} \Leftrightarrow A =  - \left( {1 - \frac{{\sqrt 2 }}{2} + \sqrt 3 } \right).\left( {1 + \frac{{\sqrt 3 }}{3}} \right)\\ \Leftrightarrow A =  - \frac{{2 - \sqrt 2  + 2\sqrt 3 }}{2}.\frac{{3 + \sqrt 3 }}{3}\\ \Leftrightarrow A =  - \frac{{\left( {2 - \sqrt 2  + 2\sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}}{6}\\ \Leftrightarrow A =  - \frac{{6 + 2\sqrt 3  - 3\sqrt 2  - \sqrt 6  + 6\sqrt 3  + 6}}{6}\\ \Leftrightarrow A =  - \frac{{12 + 8\sqrt 3  - 3\sqrt 2  - \sqrt 6 }}{6}.\end{array}\)

b)

Đặt  \(B = {\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)

Ta có: \(\left\{ \begin{array}{l}\cos {120^o} =  - \cos {60^o}\\\cot {135^o} =  - \cot {45^o}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}{120^o} = {\cos ^2}{60^o}\\{\cot ^2}{135^o} = {\cot ^2}{45^o}\end{array} \right.\)

\( \Rightarrow B = {\sin ^2}{90^o} + {\cos ^2}{60^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{45^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\left\{ \begin{array}{l}\cos {0^o} = 1;\;\;\cot {45^o} = 1;\;\;\cos {60^o} = \frac{1}{2}\\\tan {60^o} = \sqrt 3 ;\;\;\sin {90^o} = 1\end{array} \right.\)

\( \Rightarrow B = {1^2} + {\left( {\frac{1}{2}} \right)^2} + {1^2} - {\left( {\sqrt 3 } \right)^2} + {1^2}\)

\( \Leftrightarrow B = 1 + \frac{1}{4} + 1 - 3 + 1 = \frac{1}{4}.\)

c

Đặt  \(C = \cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\sin {30^o} = \frac{1}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\cos {60^o} = \frac{1}{2}\;\)

\( \Rightarrow C = \frac{1}{2}.\frac{1}{2} + {\left( {\;\frac{{\sqrt 3 }}{2}} \right)^2} = \frac{1}{4} + \frac{3}{4} = 1.\)