Tìm các khoảng đồng biến, nghịch biến của các hàm số: y = 2 x x 2 - 9
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Khoảng nghịch biến của hàm số y= 1/2x^4-3x^2-3 là gì các bạn?
Hàm số y= x^2/1-x đồng biến trên khoảng nào?
Hàm số y= x^3+3x^2 nghịch biến trên khoảng nào?
a) Tìm khoảng đồng biến và nghịch biến của hàm số có đồ thị sau:
b) Xét tính đồng biến, nghịch biến của hàm số \(y = f(x) = 5{x^2}\) trên khoảng (2; 5).
a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]
+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).
+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).
+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).
b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).
Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).
Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)
Từ đây suy ra \(f({x_1}) < f({x_2})\)
Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).
Tìm các khoảng đồng biến, nghịch biến của các hàm số sau:
a) \(f(x) = - 5x + 2\)
b) \(f(x) = - {x^2}\)
a) Xét hàm số \(y = - 5x + 2\) xác định trên \(\mathbb{R}\)
Lấy \({x_1},{x_2} \in \mathbb{R}\) là hai số tùy ý sao cho \({x_1} < {x_2}\).
Do \({x_1} < {x_2}\) nên \( - 5{x_1} > - 5{x_2}\), suy ra \( - 5{x_1} + 2 > - 5{x_2} + 2\)
Từ đây ta có \(f({x_1}) > f({x_2})\)
Vậy hàm số ngịch biến (giảm) trên \(\mathbb{R}\)
b) Xét hàm số \(y = f(x) = - {x^2}\) xác định trên \(\mathbb{R}\)
+ Trên khoảng \((0; + \infty )\) lấy \({x_1},{x_2} \in \mathbb{R}\) là hai số tùy ý sao cho \({x_1} < {x_2}\)., ta có: \(f({x_1}) - f({x_2}) = - {x_1}^2 + {x_2}^2 = \left( {{x_2} - {x_1}} \right)({x_2} + {x_1})\)
Do \({x_1} < {x_2}\) nên \( {x_2} - {x_1} > 0\) và do \({x_1},{x_2} \in (0; + \infty )\) nên \({x_1} + {x_2} > 0\).
Từ đây suy ra \(f({x_1}) - f({x_2}) > 0\) hay \(f({x_1}) > f({x_2})\)
Vậy hàm số nghịch biến (giảm) trên khoảng \((0; + \infty )\)
+ Trên khoảng \(( - \infty ;0)\) lấy \({x_1},{x_2} \in \mathbb{R}\) là hai số tùy ý sao cho \({x_1} < {x_2}\)., ta có: \(f({x_1}) - f({x_2}) = - {x_1}^2 + {x_2}^2 = \left( {{x_2} - {x_1}} \right)({x_2} + {x_1})\)
Do \({x_1} < {x_2}\) nên \( {x_2} - {x_1} > 0\) và do \({x_1},{x_2} \in ( - \infty ;0)\) nên \({x_1} + {x_2} < 0\).
Từ đây suy ra \(f({x_1}) - f({x_2}) < 0\) hay \(f({x_1}) < f({x_2})\)
Vậy hàm số đồng biến (tăng) trên khoảng \(( - \infty ;0)\)
Tìm các khoảng đồng biến nghịch biến của hàm số (x+3)sqrt(3-2x-x^2)
Phát biểu các điều kiện đồng biến và nghịch biến của hàm số. Tìm các khoảng đơn điệu của hàm số
y = - x 3 + 2 x 2 - x - 7 ; y = x - 5 1 - x
- Điều kiện đồng biến, nghịch biến của hàm số:
Cho hàm số y = f(x) có đạo hàm trên khoảng K.
+ f(x) đồng biến (tăng) trên K nếu f’(x) > 0 với ∀ x ∈ K.
+ f(x) nghịch biến (giảm) trên K nếu f’(x) < 0 với ∀ x ∈ K.
- Xét hàm số
+ Hàm số đồng biến
+ Hàm số nghịch biến
Vậy hàm số đồng biến trên
nghịch biến trên các khoảng và (1; +∞)
- Xét hàm số
Ta có: D = R \ {1}
∀ x ∈ D.
⇒ Hàm số nghịch biến trên từng khoảng (-∞; 1) và (1; +∞).
tìm khoảng đồng biến nghịch biến của các hàm số
a) y = \(x^3\) - \(3x^2\) +1
b) y = \(-x^3\) + \(3x\) - 5
a: y'=3x^2-3*2x=3x^2-6x=3x(x-2)
y'>0 khi x(x-2)>0
=>x>2 hoặc x<0
=>Khi x>2 hoặc x<0 thì hàm số đồng biến
y'<0 khi x(x-2)<0
=>0<x<2
=>Khi 0<x<2 thì hàm số nghịch biến
b: y'=-3x^2+3
y'>0 khi -3x^2+3>0
=>-3x^2>-3
=>x^2<1
=>-1<x<1
Khi -1<x<1 thì hàm số đồng biến
y'<0 khi x^2>1
=>x>1 hoặc x<-1
Vậy: Khi x>1 hoặc x<-1 thì hàm số nghịch biến
cho hàm số y = 2x2 - (m - 1 )x +3, m là tham số
a. tìm khoảng đồng biến, nghịch biến của hàm số
b/ tìm các giái trị của m để hàm số đồng biến trên khoảng 1;+∞
c. tìm m để hàm số nghịch biến trên khoàng -4;8
d. tìm m để giá trị nhỏ nhất của hàm số là 9
Vẽ đồ thị của hàm số y = x ^ 2 - 2x + 2 và nêu các khoảng đồng biến,nghịch biến
Tọa độ đỉnh là I(1;1)
mà a=1>0
nên hàm số đồng biến khi \(x\in\left(1;+\infty\right)\) và nghịch biến khi \(x\in\left(-\infty;1\right)\)
Cho hàm số y = f(x) có bảng biến thiên như hình dưới đây
I. Hàm số đồng biến trên khoảng - 3 ; - 2
II. Hàm số đồng biến trên khoảng - ∞ ; 5
III. Hàm số nghịch biến trên các khoản - 2 ; + ∞
IV. Hàm số đồng biến trên khoảng - ∞ ; - 2
Số mệnh đề sai trong các mệnh đề trên là
A. 2
B. 3
C. 4
D. 1
Đáp án D
Khẳng định số II sai.
Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng - ∞ ; - 2