Cho cấp số cộng u n có công sai d = -4 và u 3 2 + u 4 2 đạt giá trị nhỏ nhất. Tìm u 2019 là số hạng thứ 2019 của cấp số cộng đó.
A. u 2019 = − 8062.
B. u 2019 = − 8060.
C. u 2019 = − 8058.
D. u 2019 = − 8054.
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
cho cấp số cộng (u\(_n\)) có công sai d khác 0 và cấp số nhân (v\(_n\)) có công bội q là số dương thỏa mãn \(u_1=v_1=-2\); \(u_2=v_2\); \(u_3=v_3+8\). tính tổng d+q
\(u_2=u_1+d=-2+d\) ; \(v_2=v_1q=-2q\)
\(u_2=v_2\Rightarrow-2+d=-2q\Rightarrow d=2-2q\)
\(u_3=v_3+8\Leftrightarrow-2+2d=-2q^2+8\)
\(\Leftrightarrow-2+2\left(2-2q\right)=-2q^2+8\)
\(\Leftrightarrow2q^2-4q-6=0\Rightarrow\left[{}\begin{matrix}q=-1\Rightarrow d=4\\q=3\Rightarrow d=-4\end{matrix}\right.\)
Cho dãy số \(({u_n})\) với \({u_n} = 3n + 6\). Khẳng định nào sau đây là đúng?
A. Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).
B. Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 6\).
C. Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 3\).
D. Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 6\).
Ta có: \({u_n} - {u_{n - 1}} = \left( {3n + 6} \right) - \left[ {3\left( {n - 1} \right) + 6} \right] = 3,\;\forall n \ge 2\)
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).
Chọn đáp án A.
Cho dãy số \(\left(u_n\right)\) là một cấp số cộng có \(u_1\) = 4, công sai d = -3 và \(u_n\) = -41. Tìm n?
Cho dãy số u n là một cấp số cộng có u 1 = 3 và công sai d=4. Biết tổng n số hạng đầu của dãy số u n là S n = 253 . Tìm n?
A. 10
B. 9
C. 12
D. 11
cho số N nguyên dương và dãy A gồm N phần tử kiểm tra xem dãy số vừa nhập có phải là một cấp số cộng hay không
VD: N= 4
Dãy A: 1 2 3 4 à là cấp số cộng với công sai d=1
Yêu cầu:
- xác định bài toán
- nêu ý tưởng
- mô tả thuật toán
Input: dãy A và N phần tử
Output: Là cấp số cộng hoặc không là cấp số cộng
Thuật toán:
- Bước 1: Nhập N và dãy A1,A2,...,An
- Bước 2: d←A2-A1; i←2;
-Bước 3: Nếu i>N thì in ra kết quả là cấp số cộng rồi kết thúc
- Bước 4: Nếu Ai+1-Ai khác d thì chuyền xuống bước 6
- Bước 5: i←i+1, quay lại bước 3
- Bước 6: Thông báo không phải là cấp số cộng rồi kết thúc
Cho cấp số cộng u n có u 1 = − 2 và công sai d = 3 . Số hạng u 10 là
A. 25
B. 26
C. 27
D. 28
Đáp án A
u n = u 1 + n − 1 d ⇒ u 10 = − 2 + 9 .3 = 25
Cho cấp số cộng u n có u 1 = − 2 và công sai d=3 Tìm số hạng u 10 .
A. u 10 = − 2.3 9
B. u 10 = 25
C. u 10 = 28
D. u 10 = − 29
Đáp án B
u 10 = u 1 + 9 d = − 2 + 9.3 = 25
Cho cấp số cộng (un) có u1 = -2 và công sai d = 3. Tìm số hạng u10.
A. u 10 = - 2 . 3 9
B. u 10 = 25
C. u 10 = 28
D. u 10 = - 29
Cho cấp số cộng ( u n ) có u 1 = - 2 và công sai d=3. Số hạng u 10 là
A. 27
B. 28
C. 26
D. 25