Chứng minh , kiểm tra 1 dãy số có là cấp số cộng hay không ? xác định U1 , d
a , \(\left\{{}\begin{matrix}u_1\\u_n+1=u_n-n\end{matrix}\right.\)
b , \(\left\{{}\begin{matrix}u_1=a\\u_n+1=5\end{matrix}\right.\) tìm a để d số là cấp số cộng
Trong các dãy số \(\left(u_n\right)\) sau đây, dãy số nào là cấp số cộng ?
a) \(u_n=3n-1\)
b) \(u_n=2^n+1\)
c) \(u_n=\left(n+1\right)^2-n^2\)
d) \(\left\{{}\begin{matrix}u_1=3\\u_{n+1}=1-u_n\end{matrix}\right.\)
Tìm số hạng đầu \(u_1\) và công sai \(d\in Z\) của cấp số cộng \(\left(u_n\right)\) biết
a) \(\left\{{}\begin{matrix}u_6=8\\u_2^2+u_4^2=16\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}u_5=18\\4S_n=S_{2n}\end{matrix}\right.\)
Trong các dãy số \(\left(u_n\right)\) sau đây, dãy số nào là cấp số công ? Tính số hạng đầu và công sai của nó ?
a) \(u_n=5-2n\)
b) \(u_n=\dfrac{n}{2}-1\)
c) \(u_n=3^n\)
d) \(u_n=\dfrac{7-3n}{2}\)
Tìm cấp số cộng \(\left(u_n\right)\), biết :
a) \(\left\{{}\begin{matrix}u_1+u_2+u_3=27\\u^2_1+u^2_2+u^2_3=275\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}u_1+u_2+....+u_n=a\\u^2_1+u^2_2+.....+u^2_n=b^2\end{matrix}\right.\)
Cho dãy số \(\left(u_n\right)\) với \(u_n=1-7n\)
a) Khảo sát tính tăng, giảm của dãy số
b) Chứng minh dãy số trên là cấp số cộng. Lập công thức truy hồi của dãy số
c) Tính tổng 100 số hạng đầu của dãy số
Tính số hạng đầu \(u_1\) và công sai d của cấp số cộng \(\left(u_n\right)\), biết :
a) \(\left\{{}\begin{matrix}u_1+2u_5=0\\S_4=14\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}u_4=10\\u_7=19\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}u_1+u_5-u_3=10\\u_1+u_6=7\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}u_7-u_3=8\\u_2u_7=75\end{matrix}\right.\)
1, Cho cấp số cộng \(\left(u_n\right)\) thỏa mãn:
\(\left\{{}\begin{matrix}u_1+u_3=4\\u_2+u_4-u_5=5\end{matrix}\right.\)
Tính \(S=u_2+u_4+...+u_{50}\)
2, Cho a+b+c≠0. Chứng minh:
a, b, c lập thành cấp số cộng ⇔ \(a^2+ab+b^2\); \(a^2+ac+c^2\); \(b^2+bc+c^2\) lập thành cấp số cộng.
3, Cho dãy số \(\left(u_n\right)\): \(\left\{{}\begin{matrix}u_1=-2\\u_{n+1}=\dfrac{u_n}{1-u_n}\end{matrix}\right.\)
Tính \(u_{100}\)
Mọi người giúp mình với ạ!!! Mình cảm ơn nhiều!!!
Bài: tìm số hạng đầu, công sai của cấp số cộng \(\left(u_n\right)\):
a) \(\left\{{}\begin{matrix}u_2-u_3+u_5=10\\u_4+u_6=26\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}u_2-u_6+u_4=-7\\u_8-2u_7=2u_4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}u_7-u_3=8\\u_2.u_7=75\end{matrix}\right.\)