Bài 3: Cấp số cộng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

Tìm số hạng đầu \(u_1\) và công sai \(d\in Z\)  của cấp số cộng \(\left(u_n\right)\) biết

a) \(\left\{{}\begin{matrix}u_6=8\\u_2^2+u_4^2=16\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}u_5=18\\4S_n=S_{2n}\end{matrix}\right.\)

Hoàng Tử Hà
18 tháng 12 2020 lúc 18:44

a/ \(u_6=u_1+5d=8\Rightarrow u_1=8-5d\)

\(u_2=u_1+d;u_4=u_1+3d\)

\(\Rightarrow\left\{{}\begin{matrix}u_2=8-5d+d=8-4d\\u_4=8-5d+3d=8-2d\end{matrix}\right.\)

\(\Rightarrow\left(8-4d\right)^2+\left(8-2d\right)^2=16\Rightarrow...\)

b/ Câu này làm theo ý hiểu thôi, ko chắc đâu

\(Xet-S_n:\)

\(u_1=u_1\)

\(u_2=u_1+d\)

\(u_3=u_1+2d\)

......

\(u_n=u_1+\left(n-1\right)d\)

\(\Rightarrow S_n=u_1+u_2+...+u_n=u_1+u_1+d+...+u_1+\left(n-1\right)d=n.u_1+d+2d+....+\left(n-1\right)d\)

\(=n.u_1+\left(1+2+...+\left(n-1\right)\right)d=n.u_1+\dfrac{d\left(n-1\right).n}{2}=\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}\)

Tương tụ với S(2n)

\(S_{2n}=u_1+u_2+...+u_{2n}=u_1+u_1+d+....+u_1+\left(2n-1\right)d\)

\(=2n.u_1+d+2d+...+\left(2n-1\right)d=2n.u_1+\left(1+2+...+\left(2n-1\right)\right)d=2n.u_1+d.n\left(2n-2\right)=2n\left(u_1+\left(n-1\right).d\right)\)

\(4S_n=S_{2n}\Leftrightarrow4.\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}=2n\left(u_1+\left(n-1\right).d\right)\)

\(\Leftrightarrow2n\left[2u_1+\left(n-1\right)d\right]=2n\left[u_1+\left(n-1\right)d\right]\)\(\Leftrightarrow2u_1=u_1\Rightarrow u_1=0\)

\(u_5=u_1+4d=18\Rightarrow d=\dfrac{18}{4}=4,5\)

Ok check lại số má hộ tui nhó

 


Các câu hỏi tương tự
Bé Đầu Đất
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Bình Trần Thị
Xem chi tiết