Bài 3: Cấp số cộng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bình Trần Thị

hãy tìm 3 số hạng đầu của 1 cấp số cộng , biết :

\(\left\{\begin{matrix}u_1+u_2+u_3=-3\\u_1^2+u_2^2+u_3^2=35\end{matrix}\right.\)

Hung nguyen
21 tháng 1 2017 lúc 22:00

Gọi d là công sai của cấp số nhân thì ta có

\(\left\{\begin{matrix}u_2=u_1+d\\u_3=u_1+2d\end{matrix}\right.\)

Theo đề bài ta có: \(\left\{\begin{matrix}u_1+u_2+u_3=-3\\u^2_1+u_2^2+u^2_3=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}u_1+u_1+d+u_1+2d=-3\\u^2_1+\left(u_1+d\right)^2+\left(u_1+2d\right)^2=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}u_1+d=-1\\u^2_1+\left(u_1+d\right)^2+\left(u_1+2d\right)^2=35\end{matrix}\right.\)


\(\Leftrightarrow\left\{\begin{matrix}u_1=-1-d\\\left(-1-d\right)^2+\left(-1\right)^2+\left(-1+d\right)^2=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}u_1=-1-d\\d^2=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}u_1=-5\\d=4\end{matrix}\right.\) hoặc \(\left\{\begin{matrix}u_1=3\\d=-4\end{matrix}\right.\)

Vậy ba số hạng đầu của cấp số cộng đó là: - 5; - 1; 3 hoặc 3; - 1; - 5


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
Bé Đầu Đất
Xem chi tiết
Julian Edward
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
Mai Nguyên Khang
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết