Cho hình lập phương A B C D . A ' B ' C ' D ' có O là giao điểm của hai đường thẳng AC’ và A’C. Xác định ảnh của tứ diện A B ’ C ’ D ’ qua phép đối xứng tâm O.
A. Tứ diện ABC’D.
B. Tứ diện A’BCD.
C. Tứ diện AB’CD
D. Tứ diện ABCD’
Cho tam giác ABC cân tại A có đường cao AH . Gọi D là trung điểm của AC , K là điểm đối xứng với H qua D . Kẻ DE//BC (E thuộc AB)
a) CHứng minh rằng tứ giác EDCB là hình thang cân
b)CHứng minh tứ giác AKCH là hình chữ nhật
c) Gọi F là giao điểm của AH và ED. CHứng minh rằng F là trung điểm của BK
a) Xét tứ giác EDCB có ED//BC(gt)
nên EDCB là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)
Hình thang EDCB có \(\widehat{B}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)
nên EDCB là hình thang cân(Dấu hiệu nhận biết hình thang cân)
b) Xét tứ giác AKCH có
D là trung điểm của đường chéo AC(gt)
D là trung điểm của đường chéo HK(H và K đối xứng nhau qua D)
Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AKCH có \(\widehat{AHC}=90^0\)(AH⊥BC)
nên AKCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(gt)
nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)
⇒H là trung điểm của BC
hay HB=HC
mà HC=AK(Hai cạnh đối trong hình chữ nhật AHCK)
nên BH=AK
Xét ΔABC có
H là trung điểm của BC(cmt)
D là trung điểm của AC(gt)
Do đó: HD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒HD//AB và \(HD=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔABC có
D là trung điểm của AC(gt)
DE//BC(gt)
Do đó: E là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)
⇒\(AE=\dfrac{AB}{2}\)(2)
Từ (1) và (2) suy ra HD//AE và HD=AE
Xét tứ giác AEHD có
HD//AE(cmt)
HD=AE(cmt)
Do đó: AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
⇒Hai đường chéo AH và ED cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà AH cắt ED tại F
nên F là trung điểm chung của AH và ED
Xét tứ giác AKHB có
AK//HB(AK//HC, B∈HC)
AK=HB(cmt)
Do đó: AKHB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
⇒Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà F là trung điểm của AH(cmt)
nên F là trung điểm của BK(đpcm)
Cho hình lập phương ABCD.A′B′C′D′. Gọi O,O′ lần lượt là tâm của hai hình vuông ABCD và A′B′C′D′. Gọi V 1 là thể tích của khối trụ tròn xoay có đáy là 2 đường tròn ngoại tiếp hình vuông ABCD và A′B′C′D′, V 2 là thể tích khối nón tròn xoay đỉnh O và có đáy là đường tròn nội tiếp hình vuông A′B′C′D′. Tỷ số thể tích V 1 V 2 là
A. 6
B. 2
C. 8
D. 4
Cho hình lập phương ABCD. A1B1 C1 D1 có cạnh bằng 5 cm . Gọi O và O1 lần lượt là giao điểm của các đường chéo AC với BD và A1C1 với B1 D1.
.a) Tính diện tích toàn phần và thể tích của hình lập phươhương
b) Tinh thể tích của hình chóp O1
Cho hai đường tròn (O;4cm), (I;2cm) cắt nhau tại hai điểm phân biệt A, B sao cho OAI ≠ 90o. Tiếp tuyến của đường tròn (O) tại A cắt đường tròn (I) tại C khác A.Tiếp tuyến của đường tròn (I) tại A cắt đường tròn (O) tại D khác A. Gọi E là giao điểm của AB và CD. Gọi P, Q lần lượt là trung điểm của AD, CD. Chứng minh :
a) Hai tam giác APQ, ABC đồng dạng
b) ED = 4EC
giúp em bài này với ạ.
Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Khối nón đỉnh A, đáy là đường tròn đi qua ba điểm A′BD có thể tích bằng
A. 2 3 πa 3 27
B. 3 πa 3 8
C. 3 a 3 27
D. πa 3 6
Cho △ABC. Vẻ A' đối xứng A qua C, B' đối xứng B qua A, C' đối xứng C qua B. Gọi D là trung điểm AC, D' là trrung điểm A'C'.
a, C/m ABDD' là hình bình hành
b, Gọi O là giao của trung tuyến BD và B'D', M là trung điểm OB; N là trung điểm OB'. C/m DD'MN là hình bình hành.
c, C/m O là trực tâm △ABC
Các bạn vẽ hình rồi giải giúp mik nha. Mik đang cần gấp
Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng 1. Gọi K là trung điểm của DD′ (tham khảo hình vẽ bên). Côsin góc giữa hai đường thẳng CK và A′D bằng
A. 10 5
B. 4 5
C. 10 10
D. 2 5
Cho ΔABC. Vẽ A' đối xứng với A qua C ; B' đối xứng với B qua A ; C' đối xứng với C qua B. Gọi D là trung điểm AC ; D' là trung điểm A'C'.
a) C/m ABD'D là hình bình hành
b) Gọi O là giao của trung truyến BD và B'D' ; M là trung điểm OB ; N là trung điểm OB'. C/m DD'NM là hình bình hành.
c) C/m O là trọng tâm của ΔABC.
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Từ M vẽ 2 tiếp tuyến MA, MB (A,B là tiếp điểm). Đường thẳng qua M cắt đường tròn (O) tại C, D (MC<MD) sao cho điểm O nằm trong tam giác BCD. Vẽ đường kính CE của đường tròn (O). Gọi S là giao điểm của EA và BC
a) Cm tứ giác MAOB nội tiếp và OM vuông góc AB
b) Cm tam giác OAM đồng dạng CAS
c) Cm tam giác OAC và MAS đồng dạng và tam giác MAS cân
d) Gọi N là giao điểm của MO và AE. Cm tứ giác BSMN nội tiếp và ND vuông góc AD
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB
b: góc CAE=1/2*180=90 độ
Xét ΔOAM vuông tại A và ΔCAS vuông tại A có
góc AOM=góc ACS
=>ΔOAM đồng dạng với ΔCAS
Cho hình chóp S.ABCD có ABCD là tứ giác lồi. Gọi O là giao điểm của AC và BD. Gọi c là giao tuyến các(SAC) và (SBD). Tìm c ?
A. c = SA . B. c = AC. C. c = BD. D. c = SO.