a) Xét tứ giác EDCB có ED//BC(gt)
nên EDCB là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)
Hình thang EDCB có \(\widehat{B}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)
nên EDCB là hình thang cân(Dấu hiệu nhận biết hình thang cân)
b) Xét tứ giác AKCH có
D là trung điểm của đường chéo AC(gt)
D là trung điểm của đường chéo HK(H và K đối xứng nhau qua D)
Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AKCH có \(\widehat{AHC}=90^0\)(AH⊥BC)
nên AKCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(gt)
nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)
⇒H là trung điểm của BC
hay HB=HC
mà HC=AK(Hai cạnh đối trong hình chữ nhật AHCK)
nên BH=AK
Xét ΔABC có
H là trung điểm của BC(cmt)
D là trung điểm của AC(gt)
Do đó: HD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒HD//AB và \(HD=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔABC có
D là trung điểm của AC(gt)
DE//BC(gt)
Do đó: E là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)
⇒\(AE=\dfrac{AB}{2}\)(2)
Từ (1) và (2) suy ra HD//AE và HD=AE
Xét tứ giác AEHD có
HD//AE(cmt)
HD=AE(cmt)
Do đó: AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
⇒Hai đường chéo AH và ED cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà AH cắt ED tại F
nên F là trung điểm chung của AH và ED
Xét tứ giác AKHB có
AK//HB(AK//HC, B∈HC)
AK=HB(cmt)
Do đó: AKHB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
⇒Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà F là trung điểm của AH(cmt)
nên F là trung điểm của BK(đpcm)