Cho hàm số y = 2 x + 3 x + 2 có đồ thị (C) và đường thẳng d: y = x + m Các giá trị của tham số m để đường thẳng (C) cắt đồ thị tại hai điểm phân biệt là:
A. m > 2
B. m > 6
C. m = 2
D. m < 2 hoặc m > 6
Bài 2: (1đ)Cho hàm số y =1/2 x + 5 có đồ thị là (d) và hàm số y =-3/2 x +1 có đồ thị là (d1)
a) Vẽ (d) và (d1) trên cùng một mặt phẳng tọa độ
b) Xác định tọa độ giao điểm của ( d) và (d1) bằng phép toán
c./Xac dinh he so a và b của đương thẳng d2 y=ax +bbiết d2 song song với d và đi qua M(-2:3)
Giup mình câu b) ạ
b: Tọa độ giao điểm của (d) và (d1) là:
\(\left\{{}\begin{matrix}\dfrac{1}{2}x+5=\dfrac{-3}{2}x+1\\y=\dfrac{1}{2}x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\y=\dfrac{1}{2}x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1+5=4\end{matrix}\right.\)
Bài 2. Cho hàm số y=(m−1)x+n có đồ thị là đường thẳng d a) Tìm m và n để đường thẳng d đi qua hai điểm A(1;2), B(2;5). b) Tìm m và n biết đường thẳng d có hệ số góc bằng 3, cắt trục hoành tại điểm có hoành độ bằng –2. c) Tìm m và n biết đường thẳng d trùng với đường thẳng d:y=5x-3. Bài 3. a) Cho hai đường thẳng d:y=(m-3)x-3m+3, d, :y=(2m+1)x+m+5 Tìm m để hai đường thẳng cắt nhau; song song với nhau; vuông góc với nhau; trùng nhau; cắt nhau tại một điểm nằm trên trục tung. b) Tìm m để ba đường thẳng d:y=2x+5,d:y=x+2,d :y=mx−12 đồng quy
2
a)
d đi qua A (1;2), B(2;5)
=> Ta có hệ phương trình: \(\left\{{}\begin{matrix}\left(m-1\right).1+n=2\\\left(m-1\right).2+n=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+n=3\\2m+n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=4\\n=-1\end{matrix}\right.\)
b)
d có hệ số góc a = 3 => d: y = 3x + n
=> m -1 = 3 <=> m = 4
d cắt Ox tại x = -2, y = 0 \(\Leftrightarrow0=3.\left(-2\right)+n\) => n = 6
c)
d trùng d' \(\Rightarrow\left\{{}\begin{matrix}m-1=5\\n=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=6\\n=-3\end{matrix}\right.\)
giúp mk câu này vs ạ
Cho hàm số y = x có đồ thị là đường thẳng (d1).
hàm số y = - x + 3 có đồ thị là đường thẳng (d2).
và hàm số y = m x + 2 có đồ thị là đường thẳng (d3).
a) Vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Oxy.
b) Gọi giao điểm của (d1) và (d2) là A, giao điểm của (d2) và trục Ox là B. Tính diện tích tam giác AOB .
c) Xác định điểm D thuộc đường thẳng (d1) và E thuộc (d2) sao cho hoành độ của chúng đều bằng 3.
d) Tìm m để (d3) song song với (d1).
e) Tìm m để ba đường thẳng đồng qui.
f) Chứng minh rằng (d3) luôn đi qua một điểm cố định với mọi m.
g) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d3) bằng 1
h) Tìm m để đường thẳng (d3) cắt (d2) tại điểm nằm ở góc phần tư thứ III.
d: Để hai đường thẳng song song thì m=1
Trong mặt phẳng tọa độ Oxy Cho hàm số y = 2 x - 3 có đồ thị là đường thẳng d1 và hàm số y = 1/2 x có đồ thị là đường thẳng d2 a vẽ đồ thị d1 và d2 trên cùng hệ trục tọa độ
cho hàm số y = ( 2 -m)x + m -1 (1) tìm m biết
a) đồ thị (1) đi qua gốc tọa độ
b) đồ thị của (1) tạo với trục Ox một góc ∂ = 30 độ
c) đồ thị của (1) tạo với trục Ox một góc ∂= 135 độ
d) đường thẳng (1) cắt trục tung tại điểm có tung đọ bằng 4
e) đường thẳng (1) cắt trục hoành tại điểm có hoành đọ bằng (-3)
\(y=\left(2-m\right)x+m-1\)
Có: \(\left\{{}\begin{matrix}a=2-m\\b=m-1\end{matrix}\right.\) (ĐK: \(m\ne2\))
a) Để đồ thị (1) đi qua góc tọa độ thì: \(b=0\)
\(\Rightarrow m-1=0\)
\(\Rightarrow m=1\) (tm)
b) Để đồ thị (1) tạo với trục Ox một góc \(\partial=30^o\) thì
\(a=tan\partial\)
\(\Rightarrow2-m=tan30^o\)
\(\Rightarrow2-m=\dfrac{\sqrt{3}}{3}\)
\(\Rightarrow m=2-\dfrac{\sqrt{3}}{3}\)
\(\Rightarrow m=\dfrac{6-\sqrt{3}}{3}\left(tm\right)\)
c) Để đồ thị (1) tạo với trục Ox một góc \(\partial=135^o\) thì:
\(a=tan\partial\)
\(\Rightarrow2-m=tan135^o\)
\(\Rightarrow2-m=-1\)
\(\Rightarrow m=2+1\)
\(\Rightarrow m=3\left(tm\right)\)
d) Để đường thẳng (1) cắt trục tung tại điểm có tung độ là 4 thì: (đk: \(m\ne1\) vì nếu bằng 1 thì (1) sẽ đi qua gốc tọa độ)
Ta thay \(x=0\) và \(y=4\) vào (1) ta có:
\(4=\left(2-m\right)+m-1\)
\(\Rightarrow m-1=4\)
\(\Rightarrow m=4+1\)
\(\Rightarrow m=5\left(tm\right)\)
e) Để đường thẳng (1) cắt trục hành tại điểm có hoành độ bằng (-3) thì: (đk: \(m\ne1\))
Ta thay \(x=-3\) và \(y=0\) vào (1) ta có:
\(0=-3\cdot\left(2-m\right)+m-1\)
\(\Rightarrow-6+3m+m-1=0\)
\(\Rightarrow4m-7=0\)
\(\Rightarrow4m=7\)
\(\Rightarrow m=\dfrac{7}{4}\left(tm\right)\)
ĐKXĐ: x ≠ 2
a) Đồ thị của hàm số đi qua gốc tọa độ nên m - 1 = 0
⇔ m = 1 (nhận)
Vậy m = 1 thì đồ thị của hàm số đi qua gốc tọa độ
b) Do đồ thị của hàm số tạo với trục Ox một góc ∂ = 30⁰ nên:
tan30⁰ = 2 - m
⇔ 2 - m = √3/3
⇔ m = 2 - √3/3 (nhận)
Vậy m = 2 - √3/3 thì đồ thị của hàm số đã cho tạo với trục Ox một góc 30⁰
c) Do đồ thị của hàm số tạo với trục Ox một góc ∂ = 135⁰
⇒ 2 - m = tan135⁰
⇔ 2 - m = -1
⇔ -m = -1 - 2
⇔ m = 3 (nhận)
Vậy m = 3 thì đồ thị của hàm số đã cho tạo với trục Ox một góc 135⁰
d) Do đường thẳng (1) cắt trục tung tại điểm có tung độ bằng 4 nên thay x = 0; y = 4 vào (1), ta có:
(2 - m).0 + m - 1 = 4
⇔ m = 4 + 1
⇔ m = 5 (nhận)
Vậy m = 5 thì đường thẳng (1) cắt trục tung tại điểm có tung độ bằng 4
e) Do đường thẳng (1) cắt trục hoành tại điểm có hoành độ bằng -3 nên thay x = -3; y = 0 vào (1) ta có:
(2 - m).(-3) + m - 1 = 0
⇔ -6 + 3m + m - 1 = 0
⇔ 4m - 7 = 0
⇔ 4m = 7
⇔ m = 7/4 (nhận)
Vậy m = 7/4 thì (1) cắt trục hoành tại điểm có hoành độ bằng -3
Cho hàm số y = 2 ( m − 2 ) x + m có đồ thị là đường thẳng d 1 và hàm số y = − x − 1 có đồ thị là đường thẳng d 2 . Xác định m để hai đường thẳng d 1 v à d 2 cắt nhau tại một điểm có tung độ y = 3
A. m = 7 13
B. m = - 7 13
C. m = − 13 7
D. m = 13 7
Thay y = 3 vào phương trình đường thẳng d 2 ta được − x − 1 = 3 ⇔ x = − 4
Suy ra tọa độ giao điểm của d 1 v à d 2 là (−4; 3)
Thay x = − 4 ; y = 3 vào phương trình đường thẳng d 1 ta được:
2 ( m − 2 ) . ( − 4 ) + m = 3 ⇔ − 7 m + 16 = 3 ⇔ m = 13 7
Vậy m = 13 7
Đáp án cần chọn là: D
Cho hàm số y=(m+1)x-2 có đồ thị là đường thẳng d. Tìm m để đồ thị hàm số d cắt đồ thị hàm số y=x+3 tại điểm có tung độ là 2.
Bài 1: Cho hai hàm số bậc nhất: y= (k+1)x + 3 ; y= (3-2k)x + 1 a)Vẽ đồ thị của hai hàm số trên khi k=2 - Khi k=2 thì ta có hai hàm số : y= 3x+3 và y= -x+1 b) Tìm tọa độ giao điểm của đồ thị hàm số vừa vẽ. c) Tìm góc tạo bởi đường thẳng y= 3x+3 vớt trục Ox ( làm tròn đến phút ) giải giúp mik vs ak!! mik đang cần gấp lắm!!
a)
Thay x=0 vào hàm số y= 3x+3, ta được: y= 3 x 0 + 3 = 3
Thay y=0 vào hàm số y= 3x+3, ta được: 0= 3x+3 => x= -1
Vậy đồ thị hàm số đi qua điểm B(-1;0) và C(0;3)
Thay x=0 vào hàm số y= -x+1, ta được: y= -0 + 1 = 1
Thay y=0 vào hàm số y= -x+1, ta được: 0= -x+1 => x= 1
(Có gì bạn tự vẽ đồ thị nha :<< mình không load hình được sorry bạn nhiều)
b) Hoành độ giao điểm của hai đường thằng y=3x+3 và y=-x+1 :
3x+3 = -x+1
<=> 3x + x = 1 - 3
<=> 4x = -2
<=> x= - \(\dfrac{1}{2}\)
Thay x= - \(\dfrac{1}{2}\) vào hàm số y= -x+1, ta được: y= \(\dfrac{1}{2}\)+1 = \(\dfrac{3}{2}\)
Vậy giao điểm của hai đường thằng có tọa độ (\(-\dfrac{1}{2};\dfrac{3}{2}\))
c) Gọi góc tạo bởi đường thẳng y= 3x+3 là α
OB= \(\left|x_B\right|=\left|-1\right|=1\)
OC= \(\left|y_C\right|=\left|3\right|=3\)
Xét △OBC (O= 90*), có:
\(tan_{\alpha}=\dfrac{OC}{OB}=\dfrac{3}{1}=3\)
=> α= 71*34'
Vậy góc tạo bởi đường thằng y=3x+3 là 71*34'
Bài 1: Cho hàm số y= (m -3).x+m+2
a) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ = -3
b) Tìm m để đồ thị hàm số song song với đường thẳng y= -2x+1
c) Tìm m để đồ thị hàm số vuông góc với đường thẳng y= -2x-3
Bài 2: Đồ thị hàm số y= ax+b (a ≠ 0) và đường thẳng y = a'x+ b' ( b ≠ 0). Khi a.a'= -1
(mink đag cần gấp)
Để hàm số y=(m-3)x+m+2 là hàm số bậc nhất thì \(m-3\ne0\)
hay \(m\ne3\)
a) Để đồ thị hàm số y=(m-3)x+m+2 cắt trục tung tại điểm có tung độ bằng -3 thì
Thay x=0 và y=-3 vào hàm số y=(m-3)x+m+2, ta được:
\(\left(m-3\right)\cdot0+m+2=-3\)
\(\Leftrightarrow m+2=-3\)
hay m=-5(nhận)
b) Để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1 thì
\(\left\{{}\begin{matrix}m-3=-2\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy: Không có giá trị nào của m để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1
tìm m thỏa mãn yêu cầu bài toán
a) đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) có đường tiệm cận đứng đi qua điểm M (3;-1)
b) đường thẳng x = -2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)
c) biết đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\) có tiệm cận đứng là x = 2 và tiệm cận ngang y = 3. Tính 2a+3b
d) đồ thị hàm số \(y=\dfrac{x+2}{x^2+2x+m^2-3m}\) có 2 đường tiệm cận đứng
a: \(\lim\limits_{x\rightarrow-\dfrac{3m}{2}}\dfrac{x+3}{2x+3m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\dfrac{3m}{2}}2x+3m=0\\\lim\limits_{x\rightarrow-\dfrac{3m}{2}}x+3=\dfrac{-3m}{2}+3\end{matrix}\right.\)
=>x=-3m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\)
Để tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) đi qua M(3;-1) thì \(-\dfrac{3m}{2}=3\)
=>-1,5m=3
=>m=-2
b: \(\lim\limits_{x\rightarrow-m}\dfrac{2x-3}{x+m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-m}2x-3=-2m-3\\\lim\limits_{x\rightarrow-m}x+m=0\end{matrix}\right.\)
=>x=-m là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)
Để x=-2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\) thì -m=-2
=>m=2
c: \(\lim\limits_{x\rightarrow\dfrac{2}{b}}\dfrac{ax+1}{bx-2}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow\dfrac{2}{b}}ax+1=a\cdot\dfrac{2}{b}+1\\\lim\limits_{x\rightarrow\dfrac{2}{b}}bx-2=b\cdot\dfrac{2}{b}-2=0\end{matrix}\right.\)
=>Đường thẳng \(x=\dfrac{2}{b}\) là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\)
=>2/b=2
=>b=1
=>\(y=\dfrac{ax+1}{x-2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow+\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)
=>Đường thẳng y=a là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{ax+1}{x-2}\)
=>a=3