Tìm nguyên hàm của hàm số f(x)=3x+2.
A. ∫ f x d x = 3 x 2 + 2 x + C
B. ∫ f x d x = 3 2 x 2 + 2 x + C
C. ∫ f x d x = 3 + C
D. ∫ f x d x = 3 2 x 2 + C
Cho hai hàm số F(x)= ( x 2 + a x + b ) e - x v à f ( x ) = ( - x 2 + 3 x + 6 ) e - x . Tìm a và b để F(x) là một nguyên hàm của hàm số f(x)
A. a=1;b= -7
B. a= -1;b= -7
C. a= -1;b=7
D. a=1;b=7
Cho hai hàm số F ( x ) = ( x 2 + a x + b ) e - x và f ( x ) = ( - x 2 + 3 x + 6 ) e - x . Tìm a và b để F(x) là một nguyên hàm của hàm số f(x)
A. a = 1 b = -7
B. a = -1 b = -7
C. a = -1 b = 7
D. a = 1 b = 7
Tìm nguyên hàm của hàm số:
1. \(f\left(x\right)=\left(2x-1\right)e^{\dfrac{1}{x}}\)
2. \(f\left(x\right)=e^{3x}.3^x\)
2.
\(I=\int e^{3x}.3^xdx\)
Đặt \(\left\{{}\begin{matrix}u=3^x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=3^xln3dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}\int e^{3x}.3^xdx=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}.I\)
\(\Rightarrow\left(1+\dfrac{ln3}{3}\right)I=\dfrac{1}{3}e^{3x}.3^x\)
\(\Rightarrow I=\dfrac{1}{3+ln3}.e^{3x}.3^x+C\)
1.
\(I=\int\left(2x-1\right)e^{\dfrac{1}{x}}dx=\int2x.e^{\dfrac{1}{x}}dx-\int e^{\dfrac{1}{x}}dx\)
Xét \(J=\int2x.e^{\dfrac{1}{x}}dx\)
Đặt \(\left\{{}\begin{matrix}u=e^{\dfrac{1}{x}}\\dv=2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\dfrac{e^{\dfrac{1}{x}}}{x^2}dx\\v=x^2\end{matrix}\right.\)
\(\Rightarrow J=x^2.e^{\dfrac{1}{x}}+\int e^{\dfrac{1}{x}}dx\)
\(\Rightarrow I=x^2.e^{\dfrac{1}{x}}+C\)
Để tìm nguyên hàm của hàm số, ta cần xác định giá trị của hàm tại một điểm nào đó.
Trong trường hợp này, ta chọn điểm nhân nguyên tố nhất là 3.
Để tính giá trị của hàm tại điểm 3, ta đặt x=3 vào hàm số:
f ( x )
( 2 x − 1 ) e 1 x
= ( 2 ( 3 ) − 1 ) e 1 ( 3 )
= ( 6 − 1 ) e 1 3
= ( 5 ) e 1 3
f ( x )
e 3 x
= e 3 ( 3 )
= e 3 3
Ta tiến hành tính toán:
f ( 3 )
( 5 ) e 1 3
= 5 e 1 3
f ( 3 )
e 3 3
= e 3 3
Như vậy, giá trị của hàm tại điểm 3 là 5e^3 hoặc e^33, tùy thuộc vào hàm số cụ thể.
Tóm lại, để tìm nguyên hàm của hàm số, ta đã tìm được rằng giá trị của hàm tại điểm 3 là 5e^3 hoặc e^33, tùy thuộc vào hàm số cụ thể.
Cho hàm số \(f(x) = {2^{3x + 2}}\)
a) Hàm số f(x) là hàm hợp của hàm số nào?
b) Tìm đạo hàm của f(x)
a) Hàm số f(x) là hàm hợp của hàm số \(y = {a^x}\)
b) \(f'(x) = \left( {{2^{3x + 2}}} \right)' = \left( {3x + 2} \right)'{.2^{3x + 2}}.\ln 2 = {3.2^{3x + 2}}.\ln 2\)
Cho hai hàm số F x = x 2 + a x + b e - x và f x = - x 2 + 3 x + 6 e - x . Tìm a và b để F(x) là một nguyên hàm của hàm số f(x)
A. a = 1, b = -7
B. a = -1, b = -7
C. a = -1, b = =7
D. a = 1, b = 7
F(x) là một nguyên hàm của hàm số f(x) => F'(x) = f(x)
Đồng nhất ta được
Chọn B.
Cho hai hàm số F x = x 2 + a x + b e - x và f x = - x 2 + 3 x + 6 e - x . Tìm a và b để F(x) là một nguyên hàm của hàm số f(x).
A. a = 1,b = -7
B. a = -1,b = -7
C. a = -1,b = 7
D. a = 1,b = 7
Đáp án B
Ta có F x = x 2 + a x + b e - x ⇒ F ' x = - x 2 + 2 - a x + a - b e - x
mà f x = F ' x suy ra - x 2 + 2 - a x + a - b = - x 2 + 3 x + 6 ⇒ 2 - a = 3 a - b = 6 ⇔ a = - 1 b = - 7
Cho hai hàm số F x = x 2 + a x + b e - x và f x = - x 2 + 3 x + 6 e - x Tìm a và b để F(x) là một nguyên hàm của hàm số f(x)
A. a= -1;b=7.
B. a=1;b=7.
C. a=1;b= -7.
D. a= -1;b= -7.
Bải 1: Tìm tập xác định của các hàm số sau: a) 3x-2 2x+1 c) y=\sqrt{2x+1}-\sqrt{3-x} b) y= ²+2x-3 d) y= √2x+1 X f(x) Chú ý: * Hàm số cho dạng v thi f(x) * 0. ở Hàm số cho dạng y = v/(x) thì f(r) 2 0. X * Hàm số cho dạng " J7(p) thi f(x)>0.
a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)
b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)
c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)
Tìm nguyên hàm F(x) của hàm số f ( x ) = 3 + cos 4 πx 4 , F ( 4 ) = 2