Cho ( 2 − 1 ) m < ( 2 − 1 ) n . Khi đó:
A. m > n
B. m ≠ n
C. m < n
D. m = n
1. cho hàm số . tìm điểm cố định
2. cho hàm số
\(y=m^2x^2+2\left(m-1\right)+m^2-1\left(P_m\right)\) . tìm điểm cố định
Bài 1:
\(y=\left(m-1\right)x^2+2mx-3m+1\)
\(=mx^2-x^2+2mx-3m+1\)
\(=m\left(x^2+2x-3\right)-x^2+1\)
Tọa độ điểm cố định mà (Pm) luôn đi qua là:
\(\left\{{}\begin{matrix}x^2+2x-3=0\\y=-x^2+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+3\right)\left(x-1\right)=0\\y=-x^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\\y=-x^2+1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3=0\\y=-x^2+1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=0\\y=-x^2+1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-\left(-3\right)^2+1=-9+1=-8\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-1^2+1=0\end{matrix}\right.\end{matrix}\right.\)
cho phương trình 2(x^2+m+1)=(1-m)(1+m) .tìm m để phương trình đã cho luôn có nghiệm
Cho phương trình x^2-(m-1)x+m^2-m=0.tìm giá trị m để phương trình đã cho có hai nghiệm x1,x2 thõa mãn (1+x2)^2+(1+x2)^2=6
Δ=(m-1)^2-4(m^2-m)
=m^2-2m+1-4m^2+4m
=-3m^2+2m+1
Để phương trình có hai nghiệm thì -3m^2+2m+1>=0
=>-1/3<=m<=1
(1+x1)^2+(1+x2)^2=6
=>x1^2+x2^2+2(x1+x2)+2=6
=>(x1+x2)^2-2x1x2+2(m-1)+2=6
=>(m-1)^2-2(m^2-m)+2m=6
=>m^2-2m+1-2m^2+2m+2m=6
=>-m^2+2m-5=0
=>Loại
Cho hàm số y = x − (3 m + )1 x + 9x − m 3 2 , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ ñồ thị của hàm số ñã cho ứng với m = 1. 2. Xác ñịnh m ñể hàm số ñã cho ñạt cực trị tại 1 2 x , x sao cho x1 − x2 ≤ 2 .
Cho PT: \(2x^2-\left(m+1\right)x+m^2-m=0\). Tìm m để PT có 2 nghiệm x1, x2 sao cho biểu thức: A=(2\(x_1\)+1).(2\(x_2\)+1) có giá trị nhỏ nhất
Cho pt : x2 + 2(m+1)x - 2m4 +m2 =0
a, giải pt khi m=1
b, tìm m để pt có 2 nghiệm x1, x2 sao cho (m-1)x1 +x1x2 + (m-1)x2 = -1
Lời giải:
a)
Khi $m=1$ thì pt trở thành:
$x^2+4x-1=0$
$\Leftrightarrow (x+2)^2=5\Rightarrow x+2=\pm \sqrt{5}$
$\Rightarrow x=-2\pm \sqrt{5}$
b)
Để pt có 2 nghiệm pb $x_1,x_2$ thì:
$\Delta'=(m+1)^2-(-2m^4+m^2)>0\Leftrightarrow 2m^4+2m+1>0(*)$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-2(m+1)\\ x_1x_2=-2m^4+m^2\end{matrix}\right.\)
Khi đó:
$(m-1)x_1+x_1x_2+(m-1)x_2=-1$
$\Leftrightarrow (m-1)(x_1+x_2)+x_1x_2=-1$
$\Leftrightarrow -2(m-1)(m+1)+(-2m^4+m^2)=-1$
$\Leftrightarrow -2m^4-m^2+3=0$
$\Leftrightarrow (1-m^2)(2m^2+3)=0$
$\Rightarrow m^2=1\Rightarrow m=\pm 1$
Thay vào $(1)$ thấy 2 giá trị đều thỏa mãn.
cho PT x^2 -2(m+1)x+m^2+2=0(m là tham số).giải PT (1) với m=1
Khi m=1 thì pt sẽ là:
x^2-2*2x+1^2+2=0
=>x^2-4x+3=0
=>x=1 hoặc x=3
Cho phương trình 10x =m+1 (*) giải phương trình (*) khi m=1;m=-1 m=2;m=-2
Khi m=1 thì (*) sẽ là 10x=2
=>x=1/5
Khi m=-1 thì (*) sẽ là 10x=0
=>x=0
Khi m=2 thì (*) sẽ là 10x-3=0
=>x=3/10
Khi m=-2 thì (*) sẽ là 10x=-1
=>x=-1/10
1) Cho phuong trinh x+m / x+1 + x-2 / x = 2. De phuong trinh vo nghiem thi: A. m = 1 hoac m = 3 B. m = -1 hoac m = -3 C. m =2 hoac m=-2 D. m = -1/3 hoac m = 1/2