Lời giải:
a)
Khi $m=1$ thì pt trở thành:
$x^2+4x-1=0$
$\Leftrightarrow (x+2)^2=5\Rightarrow x+2=\pm \sqrt{5}$
$\Rightarrow x=-2\pm \sqrt{5}$
b)
Để pt có 2 nghiệm pb $x_1,x_2$ thì:
$\Delta'=(m+1)^2-(-2m^4+m^2)>0\Leftrightarrow 2m^4+2m+1>0(*)$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-2(m+1)\\ x_1x_2=-2m^4+m^2\end{matrix}\right.\)
Khi đó:
$(m-1)x_1+x_1x_2+(m-1)x_2=-1$
$\Leftrightarrow (m-1)(x_1+x_2)+x_1x_2=-1$
$\Leftrightarrow -2(m-1)(m+1)+(-2m^4+m^2)=-1$
$\Leftrightarrow -2m^4-m^2+3=0$
$\Leftrightarrow (1-m^2)(2m^2+3)=0$
$\Rightarrow m^2=1\Rightarrow m=\pm 1$
Thay vào $(1)$ thấy 2 giá trị đều thỏa mãn.