Khi m=1 thì (*) sẽ là 10x=2
=>x=1/5
Khi m=-1 thì (*) sẽ là 10x=0
=>x=0
Khi m=2 thì (*) sẽ là 10x-3=0
=>x=3/10
Khi m=-2 thì (*) sẽ là 10x=-1
=>x=-1/10
Khi m=1 thì (*) sẽ là 10x=2
=>x=1/5
Khi m=-1 thì (*) sẽ là 10x=0
=>x=0
Khi m=2 thì (*) sẽ là 10x-3=0
=>x=3/10
Khi m=-2 thì (*) sẽ là 10x=-1
=>x=-1/10
giải bất phương trình: m(2x-m)\(\ge\)2(x-m)+1
Giải bất phương trình sau:
a) 3x2 - 10x - 8 > 0
b) x2 + (x + 2)(11 - 7x) > 12
c) 3x - 4/x + 2 ≥ 4
d) x2 - x/1 + x2 ≤ 1
e) x/1 - 2x > x2 - x - 1/1 - 4x2
Giúp mik vs mọi người ơi mai mik ktra rồi THANKS TRƯỚC NHA!
1, Giải và biện luận
a) (m-1)x+1-m2
b) (x+m)(m-1)≤m2+2(m-1)
c)\(\frac{x-m}{x-m-1}>1\)
2, Giải các bất phương trình
a) \(\frac{2x+1}{x-1}-\frac{2x+1}{x+1}>0\)
b)\(\left|2x-1\right|< \left|x-2\right|\)
c)\(\left|x-3\right|>2x-1\)
d)\(\left|\left(x-1\right)-3\right|< 2x+1\)
Chứng tỏ rằng các bất phương trình sau đều đúng vowid mọi m:
a) (m-3)2 - m(m-6) >0
b)(5m+1)(5m+4) > 25m(m+1)
Giải bất phương trình
\(\dfrac{x^2+2x+2}{x+1}\ge\dfrac{x^2+4x+5}{x+1}-1\)
giải bất phương trình 2x-3/x-1<1/3
giải bất phương trình 2x-3/x-1 > 1/3
Chứng minh rằng với m>0 phương trình 2mx=(m-1)x+m cí nghiệm duy nhất x thỏa mãn 0<x<1
Với giá trị nào của \(m\) thì phương trình ẩn \(x\)
a) \(x-2=3m+4\) có nghiệm lớn hơn 3
b) \(3-2x=m-5\) có nghiệm nhỏ hơn -2
bài 1 Giải bất phương trình
a, x2-8x<0
b, x2<6x-5
c, x-3/x-2 < 0
d, x+1/x-3>2
bài 2 giải bất phương trình
a, 1-5x / x-1 > hoặc bằng 1
b, x/x-2 - 2/x-3 >1
giúp mình với mai đi hc rồi