Với \(m>0\)
\(2mx=\left(m-1\right)x+m\)
\(\Leftrightarrow2mx-\left(m-1\right)x=m\)
\(\Leftrightarrow\left(m+1\right)x=m\)
\(\Leftrightarrow x=\frac{m}{m+1}\)
Ta có: \(0< m< m+1\Rightarrow\frac{m}{m+1}< 1\)
\(\left\{{}\begin{matrix}m>0\\m+1>0\end{matrix}\right.\) \(\Rightarrow\frac{m}{m+1}>0\)
\(\Rightarrow0< \frac{m}{m+1}< 1\)
Do đó pt có nghiệm duy nhất thỏa mãn \(0< x< 1\)