Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cù Thị Thu Trang
Xem chi tiết
Nguyễn Huy Tú
26 tháng 3 2022 lúc 15:03

Hoành độ giao điểm (P) ; (d) tm pt 

\(\frac{1}{2}x^2+mx+m-1=0\Leftrightarrow x^2+2mx+2m-2=0\)

\(\Delta'=m^2-\left(2m-2\right)=m^2+2m+2=\left(m+1\right)^2+1>0\)

Vậy (P) cắt (d) tại 2 điểm pb 

Khách vãng lai đã xóa
Nguyễn Thùy Trang
Xem chi tiết
Nguyễn Duy Khánh
Xem chi tiết
Buddy
10 tháng 2 2021 lúc 16:34

kiểm tra lại đề nhé lỗi quá

Mai Anh Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 17:24

a) Thay x=4 vào (P), ta được:

\(y=\dfrac{4^2}{2}=\dfrac{16}{2}=8\)

Thay x=4 và y=8 vào (d), ta được:

\(m\cdot4-m+2=8\)

\(\Leftrightarrow3m=6\)

hay m=2

Vậy: m=2

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{x^2}{2}=mx-m+2\)

\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)

\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)\)

\(=m^2-2\left(m-2\right)\)

\(=m^2-2m+4\)

\(=m^2-2m+1+3\)

\(=\left(m-1\right)^2+3>0\forall m\)

Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)

Nanh
Xem chi tiết
bell_s ring_s
11 tháng 5 2018 lúc 21:50

Xét phương trình hoành độ giao điểm: x^2 = mx + 1 <=> x^2 - mx -1 = 0

\(\Delta\)= m^2 - 4 (-1) = m^2 + 4 > 0 \(\forall\)m

=> (d) luôn cắt (P) tại hai điểm phân biệt (đpcm)

Do đó:  x1 = \(\frac{1}{2}\left(m+\sqrt{m^2+4}\right)\)

=> y1 = \(\frac{1}{4}\left(m^2+m^2+4+2m\sqrt{m^2+4}\right)=\frac{1}{2}\left(m^2+2+m\sqrt{m^2+4}\right)\)

Tương tự x2 = \(\frac{1}{2}\left(m-\sqrt{m^2+4}\right)\)=> y2 = \(\frac{1}{2}\left(m^2+2-m\sqrt{m^2+4}\right)\)

Thay y1, y2 vừa tìm đc vào biểu thức y1 + y2 + y1*y2 = 7 ta đc: \(m^2+4=7\)=> m = \(\pm\sqrt{3}\)

Tính lại hộ mình xem tìm m đã đúng chưa nhé :)) sợ lẫn lộn r tính sai :))

Đinh Nguyễn Ngọc Phúc
26 tháng 5 2018 lúc 22:42

Xét phương trình : \(x^2 = mx + 1\) <=> \(x^2 - mx - 1 = 0\)

\(\Delta=\left(-m\right)^2-4\left(-1\right)=m^2+4>0\)\(\forall\)m

\(m^2\ge0\forall m\)=> (d) luôn cắt (P) tại hai điểm phân biệt

Theo Viet:\(\hept{\begin{cases}x_1+x_2=m\\x_1\times x_2=-1\end{cases}}\)

Giả sử 2 điểm phân biệt lần lượt là A(x1;y1) ; B(x2;y2)

Ta có: y1=x12 ; y2=x22

Theo bài : y1 + y2 + y1y2 = 7

<=> x12 + x22 + (x1x2)2 = 7

<=> (x1 +x2 )2 - 2x1x2 + (x1x2)2 = 7

<=> m2 + 2 + 1 = 7

<=> m2 = 7 - 3

<=> m2 = 4

=> m = \(\pm2\) 

Kiều Vĩnh An
19 tháng 5 2020 lúc 17:41

hmmmmmmm

Khách vãng lai đã xóa
Nguyễn Thị Ngọc Mai
Xem chi tiết
Nguyễn Hữu Phúc
16 tháng 3 2020 lúc 18:58

???????????????????????????????????????????????????????????

Khách vãng lai đã xóa
Vũ Thị Thu THảo
18 tháng 3 2020 lúc 21:30

a, thay m = 2 vào đthg d \(\Rightarrow\)y = -2x+1 

Cho x =0 \(\rightarrow\)y = 0Cho y = 0\(\rightarrow\) x = \(\frac{1}{2}\)

( Vẽ đthg d )

Cho x = \(\pm1\)\(\pm2\) \(\rightarrow\)y = 1 ; 4

( Vẽ Parabol P ).

b, Xét phương trình hoành độ giao điểm :

x2 = -mx+1 \(\rightarrow\) x+ mx -1 = 0 

\(\Delta\)= m2 - 4.1.(-1) =m2 + 4 

\(\rightarrow\)\(\Delta\)\(\ge\)\(\forall x\inℝ\)(đpcm)

Khách vãng lai đã xóa
tranthuylinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 14:45

1) Phương trình hoành độ giao điểm của (P) và (d) là:

\(-x^2=mx-1\)

\(\Leftrightarrow-x^2-mx+1=0\)

a=-1; b=-m; c=1

Vì ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt với mọi m

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 14:50

2) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-m\right)}{-1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{1}{-1}=-1\end{matrix}\right.\)

Ta có: \(x_1^3+x_2^3=-4\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+4=0\)

\(\Leftrightarrow\left(-m\right)^3-3\cdot\left(-1\right)\cdot\left(-m\right)+4=0\)

\(\Leftrightarrow-m^3-3m+4=0\)

\(\Leftrightarrow m^3+3m-4=0\)

\(\Leftrightarrow m^3-m+4m-4=0\)

\(\Leftrightarrow m\left(m-1\right)\left(m+1\right)+4\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(m^2+m+4\right)=0\)

\(\Leftrightarrow m-1=0\)

hay m=1

DŨNG
Xem chi tiết
Linh Nguyễn
1 tháng 3 2022 lúc 21:34

???

Thái Hưng Mai Thanh
1 tháng 3 2022 lúc 21:34

what?

Dark_Hole
1 tháng 3 2022 lúc 21:36

e đồng ý gì thế =)

Kim Taehyungie
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 20:48

a: Phương trình hoành độ giao điểm là:

\(x^2-mx+1=0\)

\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)

Để (P) và (d) cắt nhau tại 2 điểm phân biệt thi Δ>0

=>(m-2)(m+2)>0

hay \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

b: Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=1\end{matrix}\right.\)

Theo đề, ta có:

\(x_1x_2\left(x_1+x_2\right)-x_1x_2=3\)

\(\Leftrightarrow m-1=3\)

hay m=4

Dat Luong
Xem chi tiết
Nguyễn Trung An
6 tháng 5 2017 lúc 15:01

Phương trình hoành độ giao điểm của (P) và (d) là \(^{x^2+mx-1=0}\)luông có hai nghiệm phân biệt (vì ac<0)

Tổng và tích hai nghiệm xa, xb là:

xa +  xb = -m

x. xb = -1

Ta có: xa2xb + xb2xa - xaxb = 3 \(\Leftrightarrow\)xaxb(xa + xb) - xaxb = 3 \(\Leftrightarrow\)m + 1 = 3 \(\Leftrightarrow\)m = 2