Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tranthuylinh

Bài 5. (1 điểm) Cho parabol (P): y = −𝑥 ^2 và đường thẳng (d): y = mx − 1.

1. Chứng minh với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B.

2. Gọi 𝑥1 , 𝑥2 là hai hoành độ của A, B. Tìm m sao cho 𝑥1 ^3 + 𝑥2^ 3 = − 4.

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 14:45

1) Phương trình hoành độ giao điểm của (P) và (d) là:

\(-x^2=mx-1\)

\(\Leftrightarrow-x^2-mx+1=0\)

a=-1; b=-m; c=1

Vì ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt với mọi m

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 14:50

2) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-m\right)}{-1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{1}{-1}=-1\end{matrix}\right.\)

Ta có: \(x_1^3+x_2^3=-4\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+4=0\)

\(\Leftrightarrow\left(-m\right)^3-3\cdot\left(-1\right)\cdot\left(-m\right)+4=0\)

\(\Leftrightarrow-m^3-3m+4=0\)

\(\Leftrightarrow m^3+3m-4=0\)

\(\Leftrightarrow m^3-m+4m-4=0\)

\(\Leftrightarrow m\left(m-1\right)\left(m+1\right)+4\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(m^2+m+4\right)=0\)

\(\Leftrightarrow m-1=0\)

hay m=1


Các câu hỏi tương tự
tranthuylinh
Xem chi tiết
tranthuylinh
Xem chi tiết
Dat Luong
Xem chi tiết
Trần Thị Kim Ngân
Xem chi tiết
thanh trang
Xem chi tiết
Xem chi tiết
En Cô VY
Xem chi tiết
Anh Thư ctue :))
Xem chi tiết
Ngọc Đậu
Xem chi tiết