Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tranthuylinh

Cho parabol (P): y = 1/2𝑥^2 và đường thẳng (d): y = x − m + 3. 

Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ 𝑥1,𝑥2 sao cho 𝑥2 = 3𝑥1 .

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 13:24

Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{1}{2}x^2=x-m+3\)

\(\Leftrightarrow\dfrac{1}{2}x^2-x+m-3=0\)

\(\Delta=\left(-1\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-3\right)\)

\(=1-2\left(m-3\right)\)

\(=1-2m+6\)

=-2m+7

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow-2m+7>0\)

\(\Leftrightarrow-2m>-7\)

hay \(m< \dfrac{7}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{\dfrac{1}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\\x_1x_2=\dfrac{c}{a}=\dfrac{m-3}{\dfrac{1}{2}}=2m-6\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_2=3x_1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x_1=2\\x_2=3x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{2}\\x_2=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Ta có: \(x_1x_2=2m-6\)

\(\Leftrightarrow2m-6=\dfrac{1}{2}\cdot\dfrac{3}{2}=\dfrac{3}{4}\)

\(\Leftrightarrow2m=\dfrac{27}{4}\)

hay \(m=\dfrac{27}{8}\)(loại)


Các câu hỏi tương tự
tranthuylinh
Xem chi tiết
tranthuylinh
Xem chi tiết
Phuong Linh
Xem chi tiết
NGUYỄN NGỌC DIỆU
Xem chi tiết
Anh Thư ctue :))
Xem chi tiết
Vũ Đức Minh
Xem chi tiết
Hằng Nguyễn
Xem chi tiết
Hà Hàn
Xem chi tiết
Hoàng Minh Quân
Xem chi tiết