Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NGUYỄN NGỌC DIỆU

Trên mặt phẳng tọa độ Oxy cho parabol (P) y = x² và đườngthẳng (d) y = 4x +m-3.

1. Xác định m để đường thẳng d cắt trục OX tại điểm A, cắt trục Oy tại điểm B sao cho S aob=9.

2. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1; x2 thỏa mãn (4-x1)(x2-1)=2.

Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 8:02

1: Tọa độ A là:

y=0 và 4x+m-3=0

=>x=(-m+3)/4 và y=0

=>OA=|m-3|/4

Tọa độ B là:

x=0 và y=m-3

=>OB=|m-3|

Theo đề, ta có: 1/2*(m-3)^2/4=9

=>(m-3)^2/4=18

=>(m-3)^2=72

=>\(m=\pm6\sqrt{2}+3\)

2:

PTHĐGĐ là:

x^2-4x-m+3=0

Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4

Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0

=>m>-1

(4-x1)(x2-1)=2

=>4x2-4-x1x2+1=2

=>x2(x1+x2)-3-(-m+3)=2

=>x2*4-3+m-3=2

=>x2*4=2-m+6=8-m

=>x2=2-1/2m

=>x1=4-2+1/2m=1/2m+2

x1*x2=-m+3

=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2

=>-m+3-4+1/4m^2=0

=>1/4m^2-m-1=0

=>m^2-4m-4=0

=>\(m=2\pm2\sqrt{2}\)