Cho phương trình sin 2 x + 2 m − 1 sinxcosx − m + 1 cos 2 x = m . Với giá trị nào của m thì phương trình đã cho có nghiệm?
A. - 3 < m < 0
B. m ≤ 1
C. − 2 ≤ m ≤ 1
D. m ≥ 1
Giải phương trình lượng giác:
1.sin^2x + sin 2x = 3 cos^2x
2.sinx + cosx = 2√2 sinxcosx
1. \(\sin^2x+\sin2x=3\cos^2x\Leftrightarrow\sin^2x+2\sin x\cos x-3\cos^2x=0\Leftrightarrow4\sin^2x+2\sin x\cos x-3=0\)
Vì \(\cos x=0\) không phải là nghiệm của phương trình, nên chia 2 vế pt cho \(\cos x\), ta đc:
\(4\tan^2x+2\tan x-\frac{3}{\cos^2x}=0\Leftrightarrow4\tan^2x+2\tan x-3\left(1+\tan^2x\right)=0\Leftrightarrow\tan^2x+2\tan x-3=0\)
Suy ra: \(\begin{matrix}\tan x=1\\\tan x=-3\end{matrix}\) suy ra x.
b) \(\Leftrightarrow\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\sin2x\Leftrightarrow\sin\left(x+\frac{\pi}{4}\right)=\sin2x\Leftrightarrow\begin{cases}x+\frac{\pi}{4}=2x+k2\pi\\x+\frac{\pi}{4}=\pi-2x+k2\pi\end{cases}\)
\(\Leftrightarrow\begin{cases}x=\frac{\pi}{4}-k2\pi\\x=\frac{\pi}{4}+\frac{k2\pi}{3}\end{cases}\)
Vậy ....
Chỗ Viết các nghiệm: Sửa lại : dùng dấu ngoặc vuông thay cho ngoặc nhọn
Phương trình đối xứng
\(sin^3x+cos^3x=1+sinxcosx\)
Cho \(sin^2x+\left(2m-2\right)sinxcosx-\left(m+1\right)cos^2x=m\)
a, Giải khi m=-2
b, Tìm m để phương trình có nghiệm
Giải phương trình:
\(\sqrt{3}sin^2x+\left(1-\sqrt{3}\right)sinxcosx-cos^2x=\sqrt{3}-1\)
Có bao nhiêu số nguyên m để phương trình 2 c o s 2 x + 2 ( m + 1 ) s i n x c o s x = 2 m - 3 có nghiệm thực.
A. 11.
B. 6.
C. 5.
D. 10.
giải phương trình
a. cosx - \(\sqrt{3}\)sinx = \(\sqrt{2}\)
b. 5\(sin^2x\) + sinxcosx - 6\(cos^2x\)=0
a/ \(\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\sin\left(\dfrac{\pi}{6}-x\right)=\dfrac{\sqrt{2}}{2}\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{6}-x=\dfrac{\pi}{4}+k2\pi\\\dfrac{\pi}{6}-x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k2\pi\\x=-\dfrac{7\pi}{12}+k2\pi\end{matrix}\right.\)
b/ \(\cos x=0\) ko la nghiem cua pt
\(\cos x\ne0\Rightarrow pt\Leftrightarrow5\tan^2x+\tan x-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\tan x=1\\\tan x=-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow...\)
Giải phương trình:
a, \(sin^2x+\left(1-\sqrt{3}\right)sinxcosx-\sqrt{3}cos^2x=0\).
b, \(3sin^2x-4sin\left(2x\right)+5cos^2x=2\).
a) \(sin^2x+\left(1-\sqrt[]{3}\right)sinxcosx-\sqrt[]{3}cos^2x=0\)
\(\Leftrightarrow tan^2x+\left(1-\sqrt[]{3}\right)tanx-\sqrt[]{3}=0\left(cosx\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\sqrt[]{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=tan\dfrac{3\pi}{4}\\tanx=tan\dfrac{\pi}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=tan\dfrac{3\pi}{4}+k\pi\\x=\dfrac{\pi}{3}+k\pi\end{matrix}\right.\left(k\in Z\right)\)
tìm m sao cho phương trình \(\frac{2\sin x-1}{\sin x+3}=m\) có đúng 2 nghiệm sao cho \(0\le x\le\pi\)
Trong các phương trình sau: cos x = 5 - 3 (1); sin x = 1 - 2 (2); sin x + cos x = 2 (3), phương trình nào vô nghiệm?
A. (2)
B. (1)
C. (3)
D. (1) và (2)
Trong các phương trình sau: cos x = 5 - 3 (1); sin x = 1 - 2 (2); sin x + cos x = 2 (3), phương trình nào vô nghiệm?
A. (2).
B. (1).
C. (3).
D. (1) và (2).
Chọn C
Ta có: nên (1) và (2) có nghiệm.
Cách 1:
Xét: nên (3) vô nghiệm.
Cách 2:
Điều kiện có nghiệm của phương trình: sin x + cos x = 2 là:
(vô lý) nên (3) vô nghiệm.
Cách 3:
Vì
nên (3) vô nghiệm.