Tìm góc giữa 2 đường thẳng d: 6x- 5y+ 15 = 0 và ∆ 2 : x = 10 - 6 t y = 1 + 5 t .
A.900
B.300
C. 450
D. 600
Tìm côsin góc giữa 2 đường thẳng d1: 10x+ 5y- 1=0 và d 2 : x = 2 + t y = 1 - t
A. 1 2
B. 1 10
C. 3 10
D. Tất cả sai
Lời giải
Chọn C
Vectơ pháp tuyến của d1; d2 lần lượt là n 1 → ( 2 ; 1 ) ; n 2 → ( 1 ; 1 )
Cos( d1; d2) =
Cho d1:2x+5y+4=0 và d2:5x-2y+6=0.Số đo của góc giữa 2 đường thẳng d1 và d2 là? A.90° B.60° C.45° D.30°
Cho đường tròn C x^2 + y² + 2x + 5y - 15 = 0 Viết phương trình đường thẳng vuông góc với đường thẳng delta: 4x + 3y - 2 = 0 cắt đường tròn C tại hai điểm a và b sao cho ab=6
Cho đường tròn C x^2 + y² + 2x + 5y - 15 = 0 Viết phương trình đường thẳng vuông góc với đường thẳng delta: 4x + 3y - 2 = 0 cắt đường tròn C tại hai điểm a và b sao cho ab=6 Giúp với mọi người ơiii SOS
Sửa đề: x^2+y^2+2x+6y-15=0
Δ vuông góc d nên Δ: 3x+4y+c=0
(C);x^2+y^2+2x+6y-15=0
=>x^2+2x+1+y^2+6y+9-25=0
=>(x+1)^2+(y+3)^2=25
=>R=5; I(-1;-3)
Kẻ IH vuông góc AB
=>H là trung điểm của AB
=>AH=6/2=3cm
=>IH=4cm
=>d(I;Δ)=IH=4
=>|c+3-12|/5=4
=>c=-11 hoặc c=29
=>3x+4y-11=0 hoặc 3x+4y+29=0
1: Khoảng cách giữa 2 đường thẳng d: 3x-4y=0 và d' : 6x-8y -101=0
2: Cho đường thẳng d: 7x+10y-15=0 . Trong các điểm M(1;3) , N( 0;4) , P( 8;0) ,Q(1;5) . Điểm nào cách xa d nhất
Bài 2:
\(d_M=\dfrac{\left|7\cdot1+10\cdot3-15\right|}{\sqrt{7^2+10^2}}=\dfrac{22}{\sqrt{149}}\)
\(d_N=\dfrac{\left|7\cdot0+10\cdot4-15\right|}{\sqrt{7^2+10^2}}=\dfrac{25}{\sqrt{149}}\)
\(d_P=\dfrac{\left|8\cdot7+0\cdot10-15\right|}{\sqrt{7^2+10^2}}=\dfrac{41}{\sqrt{149}}\)
\(d_Q=\dfrac{\left|7\cdot1+10\cdot5-15\right|}{\sqrt{7^2+10^2}}=\dfrac{42}{\sqrt{149}}\)
Vì 22<25<41<42
nên \(d_M< d_N< d_P< d_Q\)
Do đó: Q cách xa d nhất
Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(-2; 1; -1) Tìm góc giữa hai đường thẳng AB và CD
Cho mặt phẳng α : 3x+5y-z-2=0 và đường thẳng d : x = 12 + 4 t y = 9 + 3 t z = 1 + t Gọi M là tọa độ giao điểm của đường thẳng d và mặt phẳng α . Viết phương trình mặt phẳng (P) chứa điểm M và vuông góc với đường thẳng d
Cho mặt phẳng (α) có phương trình: 3x + 5y - z - 2 = 0 và đường thẳng d có phương trình: x = 12 + 4 t y = 9 + 3 t z = 1 + t
Viết phương trình mặt phẳng β chứa điểm M và vuông góc với đường thẳng d.
(β) vuông góc với d
⇒ (β) nhận vtcp của d là 1 vtpt.
(β) đi qua M(0; 0; -2)
⇒ (β): 4x + 3y + z + 2 = 0.
Cho mặt phẳng ( α ) : 3 x + 5 y - z - 2 = 0 và đường thẳng d : x = 12 + 4 t y = 9 + 3 t z = 1 + t . Gọi M là tọa độ giao điểm của đường thẳng d và mặt phẳng (α). Viết phương trình mặt phẳng (P) chứa điểm M và vuông góc với đường thẳng d
A. 4 x + 3 y + z + 2 = 0
B. 4 x - 3 y + z + 2 = 0
C. 4 x - 3 y - z + 2 = 0
D. 4 x + 3 y + z = 0
Chọn A
Tìm tọa độ giao điểm M bằng cách giải hệ. Mặt phẳng (P) cần tìm qua điểm M và nhận vecto chỉ phương của d làm vecto pháp tuyến.