Lời giải
Chọn C
Vectơ pháp tuyến của d1; d2 lần lượt là n 1 → ( 2 ; 1 ) ; n 2 → ( 1 ; 1 )
Cos( d1; d2) =
Lời giải
Chọn C
Vectơ pháp tuyến của d1; d2 lần lượt là n 1 → ( 2 ; 1 ) ; n 2 → ( 1 ; 1 )
Cos( d1; d2) =
Tìm góc giữa 2 đường thẳng d: 6x- 5y+ 15 = 0 và ∆ 2 : x = 10 - 6 t y = 1 + 5 t .
A.900
B.300
C. 450
D. 600
Tìm côsin góc giữa hai đường thẳng Δ1 : \(2x+y-1=0\) vaf △2 : \(\left\{{}\begin{matrix}x=2+t\\y=1-t\end{matrix}\right.\)
Tìm tất cả các giá trị của a để hai đường thẳng sau vuông góc:
d 1 : x = 1 - t, y = 1 + 2t, z = 3 + at, d 2 : x = a + at, y = -1 + t, z = -2 + 2t
A. a=-2
B. a=2
C. a ≠ 2
D. Không tồn tại a
Tìm côsin góc giữa 2 đường thẳng d1: x+ 2y -7= 0 và d2: 2x- 4y+ 9= 0.
A. - 3 5
B. 2 5
C. 1 5
D. 3 5
Tìm tất cả các giá trị của a để hai đường thẳng sau chéo nhau:
d 1 : x = 1 + at, y = t, z = -1 + 2t, d 2 : x = 1 - t', y = 2 + 2t', z = 3 - t'
A. a > 0
B. a ≠ -4/3
C. a ≠ 0
D. a = 0
Cho d1:2x+5y+4=0 và d2:5x-2y+6=0.Số đo của góc giữa 2 đường thẳng d1 và d2 là? A.90° B.60° C.45° D.30°
Tìm góc giữa hai đường thẳng (d1): x+√3+1=0 và (d2): x+10=0
Câu 1. Cho tam giác ABC với A(1; 2), B(−2; 5) và C(0; 1). Gọi H, K lần lượt là chân đường cao kẻ từ
các đỉnh A, B. Hãy chỉ ra một véc-tơ pháp tuyến của mỗi đường thằng AH, BK.
Câu 2. Cho hai đường thẳng d1 : −3x + y − 2 = 0 và d2 : 2x − 3 = 0.
a) Hãy chỉ ra một VTPT của d1, d2.
b) Trong các điểm A(2; 0), B(−1; −1), C(\(\frac{3}{2}\); 1), D(\(\frac{3}{2}\); \(\frac{13}{2}\)) điểm nào thuộc d1, điểm nào thuộc d2?
Câu 3. Viết phương trình tổng quát của đường thẳng d biết
a) d đi qua điểm A(−2; 5) và có VTPT −→n = (−1; 2).
b) d đi qua điểm A(−5; 2) và vuông góc với đường thẳng BC biết tọa độ điểm B(1; 1) và
C(2; 3).
c) d đi qua điểm A(−1; 1) và song song với đường thẳng d': −4x − y + 2 = 0.
Câu 1: Tìm tập hợp các điểm cách đều 2 đường thẳng:
Delta3 :3x + 4 y + 6 = 0
Delta4 :5x -10 = 0 ( phân giác góc tạo bởi D3 và D4 )
Câu 2: Cho hai đường thẳng:
Delta : 3x + 2y - 1 = 0 và d : 5x - 3y+2=0
1) Tính khoảng cách từ A(5 ;4) đến đường thẳng Delta
2) Viết phương trình các đường phân giác của góc tạo bởi hai đường thẳng trên.
3) Tìm điểm M thuộc Delta sao cho khoảng cách từ M đến d bằng 5.
4) Tìm điểm N thuộc đường thẳng (D1) : x - 2y = 0 bằng hai lần khoảng cách từ N đến d .