Phương trình đường tròn đi qua ba điểm A(1; 2), B(-1; 1), C(2;3) là:
A. x 2 + y 2 + 5 x − 13 y + 16 = 0
B. x 2 + y 2 + 5 x − 13 y − 16 = 0
C. x 2 + y 2 + 5 2 x − 13 2 y + 16 = 0
D. x 2 + y 2 + 5 2 x − 13 2 y − 16 = 0
Phương trình đường tròn đi qua ba điểm A(-1; 3), B(1; 0), C(3; 5) là:
A. x 2 + y 2 - 5 / 8 x - 11 / 4 y + 21 / 8 = 0
B. x 2 + y 2 - 27 / 8 x - 21 / 4 y + 19 / 8 = 0
C. x 2 + y 2 - 5 / 6 x - 11 / 6 x - 2 / 3 = 0
D. x 2 + y 2 - 27 / 8 x - 21 / 4 y - 19 / 8 = 0
Phương trình đường tròn đi qua ba điểm A(-1; 3), B(1; 4), C(3; 2) là:
A. x 2 + y 2 − 5 3 x − 11 3 y + 2 3 = 0
B. x 2 + y 2 − 5 3 x − 11 3 y − 2 3 = 0
C. x 2 + y 2 − 5 6 x − 11 6 y − 2 3 = 0
D. x 2 + y 2 − 5 6 x − 11 6 y + 2 3 = 0
Gọi phương trình đường tròn là . x 2 + y 2 − 2 a x − 2 b y + c = 0
Do đường tròn qua A(-1; 3), B(1; 4), C(3; 2) nên ta có
− 1 2 + 3 2 − 2. − 1 a − 2.3 b + c = 0 1 2 + 4 2 − 2.1. a − 2.4 b + c = 0 3 2 + 2 2 − 2.3 a − 2.2 b + c = 0
⇒ 2 a − 6 b + c = − 10 − 2 a − 8 b + c = − 17 − 6 a − 4 b + c = − 13 ⇔ a = 5 6 b = 11 6 c = − 2 3
Phương trình đường tròn là x 2 + y 2 − 5 3 x − 11 3 y − 2 3 = 0 . Đáp án B.
Chú ý. Học sinh có thể tìm tâm và bán kính trước rồi suy ra phương trình của đường tròn, tuy nhiên cách làm này dài hơn. Khi có phương trình tổng quát của đường tròn rồi thì có ngay thông tin của tâm và bán kính của đường tròn.
Lập phương trình đường tròn đi qua ba điểm A(1; 2), B(5; 2), C(1 ; – 3).
Giả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)
Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\\{\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {1 - a} \right)^2} + {\left( { - 3 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = \frac{{ - 1}}{2}\end{array} \right.\)
Vậy \(I\left( {3; - \frac{1}{2}} \right)\) và \(R = IA = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( {\frac{5}{2}} \right)}^2}} = \frac{{\sqrt {41} }}{2}\)
Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 3} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{{41}}{4}\)
Phương trình của đường tròn (C) đi qua ba điểm A(0;4), B(2;4), C(4;0) có phương trình:
A. x 2 + y 2 - 8x + 2y - 1 = 0
B. x 2 + y 2 - 2x + 8y - 1 = 0
C. x 2 + y 2 - 2x - 2y - 8 = 0
D. x 2 + y 2 - 8x - 6y - 2 = 0
Đáp án: C
Giả sử (C) có dạng: x 2 + y 2 - 2ax - 2by + c = 0
Vì 3 điểm A, B, C thuộc đường tròn (C) nên ta có hệ phương trình:
Vậy phương trình đường tròn (C) có dạng: x 2 + y 2 - 2x - 2y - 8 = 0
trong mặt phẳng Oxy cho ba điểm A(0;4), B(3;4), C(3;0)
a viết phương trình đường tròn (C) đi qua ba điểm A,B,C
b viết phương trình đường tròn (C) tâm C, tiếp xúc đường thẳng (d) 3x+4y-5=0
a.
Gọi phương trình đường tròn (C) có dạng:
\(x^2+y^2-ax-by+c=0\)
Do A;B;C thuộc (C) nên: \(\left\{{}\begin{matrix}0+16-0.a-4b+c=0\\9+16-3a-4b+c=0\\9+0-3a-0.b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4b+c=-16\\-3a-4b+c=-25\\-3a+c=-9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=4\\c=0\end{matrix}\right.\)
Hay pt (C) có dạng: \(x^2+y^2-3x-4y=0\)
b.
Đường tròn (C) tiếp xúc (d) nên có bán kính \(R=d\left(C;d\right)=\dfrac{\left|3.3+0.4-5\right|}{\sqrt{3^2+4^2}}=\dfrac{4}{5}\)
Phương trình: \(\left(x-3\right)^2+y^2=\dfrac{16}{25}\)
Lập phương trình đường tròn đi qua ba điểm: A(1; 2); B(5; 2); C(1; -3)
Sử dụng phương trình đường tròn : x2 – y2 – ax – 2by +c = 0
Đường tròn đi qua điểm A(1; 2):
12 + 22 – 2a -4b + c = 0 <=> 2a + 4b – c = 5
Đường tròn đi qua điểm B(5; 2):
52 + 22 – 10a -4b + c = 0 <=> 10a + 4b – c = 29
Đường tròn đi qua điểm C(1; -3):
12 + (-3)2 – 2a + 6b + c = 0 <=> 2a – 6b – c = 10
Để tìm a, b, c ta giải hệ:
Lấy (2) trừ cho (1) ta được phương trình: 8a = 24 => a = 3
Lấy (3) trừ cho (1) ta được phương trình: -10b = 5 => b = – 0,5
Thế a = 3 ; b = -0.5 vào (1) ta tính được c = -1
Ta được phương trình đường tròn đi qua ba điểm A, B, C là :
x2 + y2 – 6x + y – 1 = 0
Chú ý:
Tâm I(x; y) của đường tròn đi qua ba điểm A, B, C là điểm cách đều ba điểm ấy, hay
IA = IB = IC => IA2 = IB2 = IC2
Từ đây suy ra x, y là nghiệm của hệ:
<=> I(3; )
Từ đây ta tìm được R và viết được phương trình đường tròn.
Lập phương trình đường tròn đi qua ba điểm:
a, A(1; 2), B(5; 2), C(1; -3)
b, M(-2; 4), N(5; 5), P(6; -2)
Gọi phương trình đường tròn (C) là: x2 + y2 – 2ax – 2by + c = 0.
a) Do A(1; 2) ∈ (C) ⇔ 12 + 22 – 2.a.1 – 2.b.2 + c = 0
⇔ 5 – 2a – 4b + c = 0 ⇔ 2a + 4b – c = 5 (1)
Do B(5; 2) ∈ (C) ⇔ 52 + 22 – 2.a.5 – 2.b.2+ c = 0
⇔ 29 – 10a – 4b + c = 0 ⇔ 10a + 4b – c = 29 (2)
Do C(1; –3) ∈ (C) ⇔ 12 + (–3)2 – 2.a.1 – 2.b.(–3) + c = 0
⇔ 10 – 2a + 6b + c = 0 ⇔ 2a – 6b – c = 10 (3)
Từ (1), (2) và (3) ta có hệ phương trình :
Giải hệ phương trình trên ta được nghiệm a = 3, b = –1/2, c = –1.
Vậy đường tròn đi qua ba điểm A, B, C là : x2 + y2 – 6x + y – 1 = 0.
b)
M(–2 ; 4) ∈ (C) ⇔ (–2)2 + 42 – 2.a.(–2) – 2.b.4 + c = 0 ⇔ 4a – 8b + c = –20 (1)
N(5; 5) ∈ (C) ⇔ 52 + 52 – 2.a.5 – 2.b.5 + c = 0 ⇔ 10a + 10b – c = 50 (2)
P(6; –2) ∈ (C) ⇔ 62 + (–2)2 – 2.a.6 – 2.b.(–2) + c = 0 ⇔ 12a – 4b – c = 40 (3)
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ phương trình trên ta được nghiệm a = 2, b = 1, c = –20.
Vậy đường tròn đi qua ba điểm M, N, P là : x2 + y2 – 4x – 2y – 20 = 0.
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
a)
Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)
với tâm I(a;b) bán kính R
\(d\left(I,Ox\right)=\frac{\left|b\right|}{\sqrt{0^2+1^2}}=\left|b\right|\)
\(d\left(I,Oy\right)=\frac{\left|a\right|}{\sqrt{1^2}}=\left|a\right|\)
Do (C) tiếp xúc với Ox , Oy
\(\Rightarrow\left|a\right|=\left|b\right|=R\\ \Rightarrow a=\pm b\)
Lại có : (C) đi qua điểm có tọa độ (2;1)
\(\Rightarrow\left(2-a\right)^2+\left(1-b\right)^2=b^2\left(vìb^2=R^2\right)\\ \Rightarrow a^2-4a+4+b^2-2b+1=b^2\\ \Leftrightarrow a^2-4a-2b+5=0\left(1\right)\)
TH1: a = b thay vào (1) ta được :
\(\Rightarrow a^2-4a-2a+5=0\\ \Leftrightarrow a^2-6a+5=0\\ \Leftrightarrow a=1hoặca=5\)
với a =1 \(\Rightarrow\) b =1
\(\Rightarrow\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=1\)
với \(a=5\Rightarrow b=5\\ \Rightarrow\left(C\right):\left(x-5\right)^2+\left(y-5\right)^2=25\)
TH2 : a = -b thay vào (1) ta được :
\(a^2-4a+2b+5=0\\ \Leftrightarrow a^2-2a+5=0\left(VôNgiệm\right)\)
Vậy có 2 đường tròn (C) cần tìm ở trên
b)
Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\) với tâm I (a;b), bán kính R
Do (C) đi qua 2 điểm (1;1) , (1;4) nên ta có :
\(\begin{cases}\left(1-a\right)^2+\left(1-b\right)^2=R^2\left(1\right)\\\left(1-a\right)^2+\left(4-b\right)^2=R^2\end{cases}\)
\(\Rightarrow\left(1-b\right)^2=\left(4-b\right)^2\\ \Rightarrow b=\frac{5}{2}\)
Lại có : (C) tiếp xúc với Ox
\(d\left(I,Ox\right)=\left|b\right|=R\\ \Rightarrow R=\frac{5}{2}\)
Thay \(b=R=\frac{5}{2}\) vào (1)ta được :
\(\left(1-a\right)^2+\left(1-\frac{5}{2}\right)^2=\frac{25}{4}\\ \Leftrightarrow a^2-2a-3=0\\ \Leftrightarrow a=-1hoặca=3\)
với \(\begin{cases}a=-1\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x+1\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)
với \(\begin{cases}a=3\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x-3\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .