$5. Phương trình đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Lập phương trình đường tròn đi qua ba điểm A(1; 2), B(5; 2), C(1 ; – 3).

Hà Quang Minh
30 tháng 9 2023 lúc 0:01

Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\\{\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {1 - a} \right)^2} + {\left( { - 3 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = \frac{{ - 1}}{2}\end{array} \right.\)

Vậy \(I\left( {3; - \frac{1}{2}} \right)\) và \(R = IA = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( {\frac{5}{2}} \right)}^2}}  = \frac{{\sqrt {41} }}{2}\)

Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 3} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{{41}}{4}\)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết