Cho tam giác ABC nhọn, đường cao BD và CE cắt nhau tại H. Chứng minh rằng:
b) Tứ giác BEDC nội tiếp
Cho tam giác ABC nhọn, kẻ 2 đường cao BD và CE cắt nhau tại H. a) Chứng minh tứ giác ADHE nội tiếp. b) CM tứ giác BEDC nội tiếp . c) góc acd = góc aed . d) góc edb =ecb
a) Xét tứ giác ADHE:
\(\widehat{AEH}+\widehat{ADH}=90^o+90^o=180^o.\)
Mà 2 góc này ở vị trí đối nhau.
\(\Rightarrow\) Tứ giác ADHE nội tiếp (dhnb).
b) Xét tứ giác BEDC:
\(\widehat{BEC}=\widehat{BDC}\left(=90^o\right).\)
Mà 2 đỉnh E; D kề nhau, cùng nhìn cạnh BC.
\(\Rightarrow\) Tứ giác BEDC nội tiếp (dhnb).
c) Sửa đề: Góc ACD \(\rightarrow\) Góc ACB.
Tứ giác BEDC nội tiếp (cmt).
\(\Rightarrow\widehat{AED}=\widehat{ACD}.\)
d) Tứ giác BEDC nội tiếp (cmt).
\(\Rightarrow\widehat{EDB}=\widehat{ECB}.\)
Cho tam giác ABC nhọn nội tiếp đường tròn tâm (O), có các đường cao BD và CE cắt nhau tại H.
a) Chứng minh: Tứ giác ADHE
b) Chứng minh: tứ giác BEDC nội tiếp.
c) Chứng minh AH vuông góc BC
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp
b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
c: Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
Cho tam giác ABC có góc nhọn nội tiếp đường tròn (O). BD , CE cắt nhau tại H. Đường thẳng BD cắt ( O ) tại M. đường thẳng CE cắt ( O ) tại N.a) Chứng minh AE.AB = AD.AC b ) Chứng minh tứ giác BEDC nội tiếp . c ) Chứng minh MN // DE . c ) Chứng minh OA vuông góc ED
b) Xét tứ giác BEDC có
\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)
nên BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Các đường cao BD,CE cắt nhau tại H. DE cắt BC tại F. Gọi K là giao điểm của AF với (O),N là giao điểm của KH a) Chứng minh tứ giá BEDC nội tiếp. Xác định tâm M của đường tròn ngoại tiếp tứ giác BEDC b ) Chứng minh góc FKE= góc FDA c ) Chứng minh AN là đường kính của đường tròn tâm O từ đó suy ra FH vuông góc với AM
Cho tam giác abc có các góc nhọn nội tiếp đường tròn (o). Hai đường cao Bd và CE cắt nhau tại H. a) Chứng minh: Các tứ giác ADHE, BEDC nội tiếp. b) Chứng minh: Góc EAH = Góc ECB c) Từ A kẻ tiếp tuyến xy với đường tròn. Chứng minh: xy//DE
Cho tam giác nhọn ABC nội tiếp trong (O;R) có BD và CE là các đường cao. Cho góc A = 60 độ, tính theo R diện tích tứ giác OEAD
Có thể giải như sau:
Tam giác vuông ABD có ^BAD = 60o => AD = AB/2
Dễ thấy tg vuông ABD đồng dạng với tg vuông ACE => AD/AE = AB/AC => AD/AB = AE/AC => tg AED đông dạng tam giác ABC ( vì có chung góc A) => ED/BC = ADAB = 1/2 => ED = BC/2
Dễ tính được BC = RV3 => ED = RV3/2
Mặt khác : Vẽ đường kính AF => BF//CE (vì cùng _I_ với AB). Dễ thấy BCDE nội tiếp => ^BDE = ^BCE (cùng chắn cung BE) = ^CBF ( so le trong) = ^CAF (cùng chắn cung CF của (O) ) => AF _I_ DE ( vì đã có AD _I_ BD)
Vậy S(OEAD) = AO.ED/2 = R^2V3/4 => R = V(4SV3/3)
p/s:tham khảo
Câu 4. (3,0 điểm) Cho tam giác ABC nhọn nội tiếp (O), hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Vẽ DK vuông góc với AB (K thuộc AB), gọi F là trung điểm của ED, tia BF cắt (O) tại I (khác B),
a) Chứng minh tứ giác BEDC nội tiếp
b) Chứng minh rằng BK.BA = BF.BI
c) Chứng minh rằng, hai đường thẳng AH và ID cắt nhau tại một điểm nằm trên (O).
AH cắt đường tròn tâm O tại M . Tam giác abd có dk là đường cao nên bk.ba=bd.bd mà bk.ba = bf.bi nên bd.bd =bf.bi
Nên bf/bd=bd/bi và góc ibd chung
Nên tam giác bfd đồng dạng tam giác bdi
Nên góc bdi = góc bid mà bdi=ecb=bcm
mà góc bia= góc bca
Cộng lại được aid=dcm
Aicm nội tiếp nên aim = dcm . Từ đó suy ra aid=aim
Nên i,d,m thẳng hàng nên ah và id cắt nhau tại điểm thuộc đường trón tâm o
Cho tam giác ABC nhọn nội tiếp đường tròn (O).
Các đường cao BD, CE của tam giác ABC cắt nhau tại H
và cắt đường tròn (O) lần lượt tại M và N. Chứng minh:
a. Các tứ giác ADHE, BEDC nội tiếp
b. DE/MN
c. OA.LDE
1.Cho tam giác ABC nhọn. Kẻ các đường cao BD, CE cắt nhau tại H. Chứng mình rằng: a,AEHD là tứ giác nội tiếp b,BEDC là tứ giác nội tiếp. Tìm tâm đường tròn ngoại tiếp c, Góc EBD=ECD d,AH vuông góc với BC
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao BM và CN cát nhau tại I. Chứng minh rằng: a,AMIN là một tứ giác nội tiếp b, Góc NAI=NMI c,AI cắt BC tại H. Chứng minh HA là tia phân giác của góc NHM
1:
a: góc AEH+góc ADH=180 độ
=>AEHD nội tiếp
b: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
c: BEDC nội tiếp
=>góc EBD=góc ECD
d: Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) Hai đường cao BD và CE cắt nhau tại H.Chứng minh rằng:
a.Tứ giác BEDC,AEHD là tứ giác nội tiếp;
b.DEC=DBC
c.Qua A vẽ tiếp tuyến xy của (O) chứng minh OA vuông góc với DE