Cho tam giác abc có các góc nhọn nội tiếp đường tròn (o). Hai đường cao Bd và CE cắt nhau tại H. a) Chứng minh: Các tứ giác ADHE, BEDC nội tiếp. b) Chứng minh: Góc EAH = Góc ECB c) Từ A kẻ tiếp tuyến xy với đường tròn. Chứng minh: xy//DE
Cho tam giác ABC nhọn nội tiếp (O; R). Hai đường cao CE, BD lần lượt cắt đường tròn lần lượt tại E’, D’. Gọi H là trực tâm của tam ABC.
a/ Chứng minh: tứ giác AEHD, BEDC nội tiếp được
b/ Chứng minh: ED//E’D’ và OA vuông góc với ED
c/ Kẻ đường kính AA’. Gọi I là trung điểm của BC. C/m: Tứ giác HCA’B là hình bình hành, từ đó suy ra H, I, A’ thẳng hàng.
d/ Cho BC cố định, khi điểm A chuyển động trên cung lớn BC thì điểm H chuyển động trên đường nào.
Giải cho em bài này với ạ !
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh tứ giác AEHD nội tiếp.
b) Chứng minh tứ giác BEDC nội tiếp được trong 1 đường tròn, xác định tâm I của đường tròn đó.
c) Chứng minh HE.HC = HB.HD
d) Chứng minh OA vuông góc với ED.
1.Cho tam giác ABC nhọn. Kẻ các đường cao BD, CE cắt nhau tại H. Chứng mình rằng: a,AEHD là tứ giác nội tiếp b,BEDC là tứ giác nội tiếp. Tìm tâm đường tròn ngoại tiếp c, Góc EBD=ECD d,AH vuông góc với BC
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao BM và CN cát nhau tại I. Chứng minh rằng: a,AMIN là một tứ giác nội tiếp b, Góc NAI=NMI c,AI cắt BC tại H. Chứng minh HA là tia phân giác của góc NHM
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O . Hai đường cao BD và CE của tam giác ABC cắt nhau tại H, đường thẳng BD cắt đường tròn (O) tại điểm thứ hai P , đường thẳng CE cắt đường tròn (O) tại điểm thứ hai Q. Chứng minh rằng:
1) BEDC là tứ giác nội tiếp,
b) HQ.HC = HP.HB
3) DE // PQ
Cho tam giác nhọn ABC nội tiếp đường tròn (O),đường cao BD,CE(D thuộc AC,E thuộc AB) cắt nhau tại H.
a)CMR: AEHD và BEDC là tứ giác nội tiếp
b)Cho Ax là tiếp tuyến tại A của (O).CMR: Ax//DE
c)Cho BK là đường kính của (O),hạ CP vuông góc BK(P thuộc BK).CMR:CP=DE
Cho tam giác ABC nội tiếp đường tròn tâm O , có các đường cao BD và CE. Đường thẳng de cắt đường tròn ngoại tiếp tam giác tại hai điểm M và N chứng minh:
a) tứ giác bedc nội tiếp
b) góc DEA = góc ACB
c) gọi x y là tiếp tuyến tại A của đường tròn tâm O. chứng minh xy song song với MN
Cho xin lời giải cái câu c) sao mà nó hơi khó @_@????
cho tam giác ABC có ba góc đều nhọn nội tiếp đường tròn O hai đường cao BD và CE cắt đường tròn O theo thứ tự P vs Q
a, chứng minh tứ giác BCDE nội tiếp đường tròn
b, gọi H là giao điểm của BD và CE, chứng minh HB.HP=HC.HQ
c, chứng minh OA vuông góc với DE
VẼ HÌNH GIÚP MÌNH VỚI NHA!
cho tam giác ABC có 3 góc nhọn, góc C = 50 độ nội tiếp đường tròn (O;2cm). Hai đường cao BD và CE cắt nhau tại H a) chứng minh tứ giác ADHE nội tiếp b) chứng minh tứ giác BEDC nội tiếp c) tính độ dài cung nhỏ AB d) chứng minh đường thẳng OA vuông góc với DE