a: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
b: Xét ΔHQB và ΔHPC có
góc HQB=góc HPC
góc QHB=góc PHC
=>ΔHQB đồng dạng với ΔHPC
=>HQ/HP=HB/HC
=>HQ*HC=HP*HB
c: kẻ tiếp tuyến Ax
=>góc xAC=góc ABC=góc ADE
=>Ax//ED
=>OA vuông góc DE
a: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
b: Xét ΔHQB và ΔHPC có
góc HQB=góc HPC
góc QHB=góc PHC
=>ΔHQB đồng dạng với ΔHPC
=>HQ/HP=HB/HC
=>HQ*HC=HP*HB
c: kẻ tiếp tuyến Ax
=>góc xAC=góc ABC=góc ADE
=>Ax//ED
=>OA vuông góc DE
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O,hai đường cao BD và CE cắt đường tròn(O)theo thứ tự tại P và Q
a)chưng minh tứ giác BCDE nội tiếp được trong một đường tròn
b)gọi H là giao điểm của BD và CE.chứng minh HB*HP=HC*HQ
c)chứng minh OA vuông góc với DE
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) Hai đường cao BD và CE cắt nhau tại H.Chứng minh rằng:
a.Tứ giác BEDC,AEHD là tứ giác nội tiếp;
b.DEC=DBC
c.Qua A vẽ tiếp tuyến xy của (O) chứng minh OA vuông góc với DE
cho tam giác ABC có các góc đều nhọn. A=45 độ. vẽ các đương cao BD và Ce của tam giác ABC. gọi H là giao điểm của BD và CE
a/ chứng minh tứ giác ADHE nội tiếp
b/ chứng minh HD=DC
c/ gọi o là tâm đường tròn ngoại tiếp tam giác ABC. chưng minh OA vuong góc với DE
1/ Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) H là giao điểm 2 đường cao BD,CE của tam giác ABC
a) Chứng minh tứ giác BCDE nội tiếp. Xác định tâm đường tròn
b) F là giao điểm AH,BC. Vẽ đường kính AK của đường tròn (O). Chứng minh góc AFB=góc ACK
c) Chứng minh tứ giác BHCK là hình bình hành và H,I,K thẳng hàng
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O . Hai đường cao BD và CE của tam giác ABC cắt nhau tại H, đường thẳng BD cắt đường tròn (O) tại điểm thứ hai P , đường thẳng CE cắt đường tròn (O) tại điểm thứ hai Q. Chứng minh rằng:
1) BEDC là tứ giác nội tiếp,
b) HQ.HC = HP.HB
3) DE // PQ
Cho tam giác abc có các góc nhọn nội tiếp đường tròn (o). Hai đường cao Bd và CE cắt nhau tại H. a) Chứng minh: Các tứ giác ADHE, BEDC nội tiếp. b) Chứng minh: Góc EAH = Góc ECB c) Từ A kẻ tiếp tuyến xy với đường tròn. Chứng minh: xy//DE
Cho tam giác ABC nhọn ( AB < AC) nội tiếp đường tròn (O;R). Vẽ đường cao BD và CE cắt tại H{ với De AC; E = AB). BD và CE lần
lượt cắt đường tròn tại M và N.
a) Chứng minh tứ giác BCDE nội tiếp đường tròn. b) Biết overline ACN = 30 deg . Tính số đo các cung nhỏ AN, MN
c) Chứng minh :OA 1 MN.
d) Gọi giao điểm của AH và BC là K. Chứng minh 2R.AK = AB.AC
SOS CÂU C VÀ D :))
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao BD và CE của tam giác ABC cắt nhau tại điểm H. Đường thẳng BD cắt đường tròn (O) tại điểm P; đường thẳng CE cắt đường tròn (O) tại điêm thứ hai Q. Chứng minh rằng: a) BEDC là tứ giác nội tiếp.
b) HQ.HC = HP.HB
c) Đường thẳng DE song song với đường thẳng PQ.
d) Đường thẳng OA là đường trung trực của đoạn thẳng P.
cho tam giác MAB có 3 góc nhọn nội tiếp đường tròn O. Vẽ MH vuông gócc với AB tại H, HD vuông góc với AM tại D, HC vuông góc với MB tại C.
1. chứng minh tứ giác MDHC là tứ giác nội tiếp đường tròn
2. chứng minh góc MDC = góc MHB
3. Chứng minh MO vuông góc với CD
Giúp tôi câu 3 mọi người ơi.
Bài 2: Cho tam giác ABC có các góc đều nhọn góc A = 45 độ. Vẽ các đường cao BD và CE của tam giác ABC. Gọi H là giao điển của BD và CE.
1 chứng minh tứ giác AHDE là tứ giác nội tiếp
2. chứng minh HD = DC
3. Tính tỷ số DE/BC
giúp tôi ý 3